Goto

Collaborating Authors

 Lacoste-Julien, Simon


Feasible Learning

arXiv.org Artificial Intelligence

We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.


Tight Lower Bounds and Improved Convergence in Performative Prediction

arXiv.org Artificial Intelligence

Performative prediction is a framework accounting for the shift in the data distribution induced by the prediction of a model deployed in the real world. Ensuring rapid convergence to a stable solution where the data distribution remains the same after the model deployment is crucial, especially in evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a broader class of problems. We introduce a new upper bound for methods that use only the final iteration of the dataset and prove for the first time the tightness of both this new bound and the previous existing bounds within the same regime. We also prove that utilizing historical datasets can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to the stable point on various perfor-mative prediction benchmarks. We offer at the same time the first lower bound analysis for RRM within the class of Affine Risk Min-imizers, quantifying the potential improvements in convergence speed that could be achieved with other variants in our framework.


Understanding Adam Requires Better Rotation Dependent Assumptions

arXiv.org Artificial Intelligence

Despite its widespread adoption, Adam's advantage over Stochastic Gradient Descent (SGD) lacks a comprehensive theoretical explanation. This paper investigates Adam's sensitivity to rotations of the parameter space. We demonstrate that Adam's performance in training transformers degrades under random rotations of the parameter space, indicating a crucial sensitivity to the choice of basis. This reveals that conventional rotation-invariant assumptions are insufficient to capture Adam's advantages theoretically. To better understand the rotation-dependent properties that benefit Adam, we also identify structured rotations that preserve or even enhance its empirical performance. We then examine the rotation-dependent assumptions in the literature, evaluating their adequacy in explaining Adam's behavior across various rotation types. This work highlights the need for new, rotation-dependent theoretical frameworks to fully understand Adam's empirical success in modern machine learning tasks.


On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

arXiv.org Artificial Intelligence

Constrained optimization offers a powerful framework to prescribe desired behaviors in neural network models. Typically, constrained problems are solved via their min-max Lagrangian formulations, which exhibit unstable oscillatory dynamics when optimized using gradient descent-ascent. The adoption of constrained optimization techniques in the machine learning community is currently limited by the lack of reliable, general-purpose update schemes for the Lagrange multipliers. This paper proposes the $\nu$PI algorithm and contributes an optimization perspective on Lagrange multiplier updates based on PI controllers, extending the work of Stooke, Achiam and Abbeel (2020). We provide theoretical and empirical insights explaining the inability of momentum methods to address the shortcomings of gradient descent-ascent, and contrast this with the empirical success of our proposed $\nu$PI controller. Moreover, we prove that $\nu$PI generalizes popular momentum methods for single-objective minimization. Our experiments demonstrate that $\nu$PI reliably stabilizes the multiplier dynamics and its hyperparameters enjoy robust and predictable behavior.


Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse Actions, Interventions and Sparse Temporal Dependencies

arXiv.org Machine Learning

This work introduces a novel principle for disentanglement we call mechanism sparsity regularization, which applies when the latent factors of interest depend sparsely on observed auxiliary variables and/or past latent factors. We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors and the sparse causal graphical model that explains them. We develop a nonparametric identifiability theory that formalizes this principle and shows that the latent factors can be recovered by regularizing the learned causal graph to be sparse. More precisely, we show identifiablity up to a novel equivalence relation we call "consistency", which allows some latent factors to remain entangled (hence the term partial disentanglement). To describe the structure of this entanglement, we introduce the notions of entanglement graphs and graph preserving functions. We further provide a graphical criterion which guarantees complete disentanglement, that is identifiability up to permutations and element-wise transformations. We demonstrate the scope of the mechanism sparsity principle as well as the assumptions it relies on with several worked out examples. For instance, the framework shows how one can leverage multi-node interventions with unknown targets on the latent factors to disentangle them. We further draw connections between our nonparametric results and the now popular exponential family assumption. Lastly, we propose an estimation procedure based on variational autoencoders and a sparsity constraint and demonstrate it on various synthetic datasets. This work is meant to be a significantly extended version of Lachapelle et al. (2022).


On the Identifiability of Quantized Factors

arXiv.org Artificial Intelligence

Disentanglement aims to recover meaningful latent ground-truth factors from the observed distribution solely, and is formalized through the theory of identifiability. The identifiability of independent latent factors is proven to be impossible in the unsupervised i.i.d. setting under a general nonlinear map from factors to observations. In this work, however, we demonstrate that it is possible to recover quantized latent factors under a generic nonlinear diffeomorphism. We only assume that the latent factors have independent discontinuities in their density, without requiring the factors to be statistically independent. We introduce this novel form of identifiability, termed quantized factor identifiability, and provide a comprehensive proof of the recovery of the quantized factors.


Weight-Sharing Regularization

arXiv.org Machine Learning

Weight-sharing is ubiquitous in deep learning. Motivated by this, we introduce ''weight-sharing regularization'' for neural networks, defined as $R(w) = \frac{1}{d - 1}\sum_{i > j}^d |w_i - w_j|$. We study the proximal mapping of $R$ and provide an intuitive interpretation of it in terms of a physical system of interacting particles. Using this interpretation, we design a novel parallel algorithm for $\operatorname{prox}_R$ which provides an exponential speedup over previous algorithms, with a depth of $O(\log^3 d)$. Our algorithm makes it feasible to train weight-sharing regularized deep neural networks with proximal gradient descent. Experiments reveal that weight-sharing regularization enables fully-connected networks to learn convolution-like filters.


Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

arXiv.org Machine Learning

We tackle the problems of latent variables identification and ``out-of-support'' image generation in representation learning. We show that both are possible for a class of decoders that we call additive, which are reminiscent of decoders used for object-centric representation learning (OCRL) and well suited for images that can be decomposed as a sum of object-specific images. We provide conditions under which exactly solving the reconstruction problem using an additive decoder is guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible transformations. This guarantee relies only on very weak assumptions about the distribution of the latent factors, which might present statistical dependencies and have an almost arbitrarily shaped support. Our result provides a new setting where nonlinear independent component analysis (ICA) is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically that additive decoders can generate novel images by recombining observed factors of variations in novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that additivity is crucial for both identifiability and extrapolation on simulated data.


Balancing Act: Constraining Disparate Impact in Sparse Models

arXiv.org Artificial Intelligence

Model pruning is a popular approach to enable the deployment of large deep learning models on edge devices with restricted computational or storage capacities. Although sparse models achieve performance comparable to that of their dense counterparts at the level of the entire dataset, they exhibit high accuracy drops for some data sub-groups. Existing methods to mitigate this disparate impact induced by pruning (i) rely on surrogate metrics that address the problem indirectly and have limited interpretability; or (ii) scale poorly with the number of protected sub-groups in terms of computational cost. We propose a constrained optimization approach that directly addresses the disparate impact of pruning: our formulation bounds the accuracy change between the dense and sparse models, for each subgroup. This choice of constraints provides an interpretable success criterion to determine if a pruned model achieves acceptable disparity levels. Experimental results demonstrate that our technique scales reliably to problems involving large models and hundreds of protected sub-groups. Current deep learning practice displays a trend towards larger architectures (Bommasani et al., 2021), as exemplified by popular models such as GPT-4 (OpenAI, 2023), Llama 2 (Touvron et al., 2023) and DALL-E 2 (Ramesh et al., 2022). Model compression techniques such as pruning (Gale et al., 2019), knowledge distillation (Hinton et al., 2015), or quantization (Gholami et al., 2021) are crucial towards enabling the deployment of large models across a wide range of platforms, including resource-constrained edge devices like smartphones. Despite achieving comparable performance at an aggregate level over the entire dataset, pruned models often exhibit significant accuracy reduction for some data sub-groups (Hooker et al., 2019; 2020; Paganini, 2020). In particular, under-represented groups can suffer high performance degradation while the overall performance remains unaffected, thus exacerbating systemic biases in machine learning models. Tran et al. (2022) refer to this phenomenon as the disparate impact of pruning. Existing mitigation methods face challenges in terms of interpretability and scalability to a large number of sub-groups. Tran et al. (2022) introduce constraints aiming to equalize the loss of the sparse model across sub-groups. However, their approach does not account for the unequal grouplevel performance of the dense model. Moreover, while the loss can be a useful surrogate for training, this method addresses the disparate impact issue indirectly as it focuses on controlling the loss, rather than group-level changes in accuracy. Alternatively, Lin et al. (2022) compute per-group importance scores for every model parameter to determine the weights to be pruned. This approach becomes prohibitively expensive when the model or the number of sub-groups is large.


Promoting Exploration in Memory-Augmented Adam using Critical Momenta

arXiv.org Artificial Intelligence

Adaptive gradient-based optimizers, particularly Adam, have left their mark in training large-scale deep learning models. The strength of such optimizers is that they exhibit fast convergence while being more robust to hyperparameter choice. However, they often generalize worse than non-adaptive methods. Recent studies have tied this performance gap to flat minima selection: adaptive methods tend to find solutions in sharper basins of the loss landscape, which in turn hurts generalization. To overcome this issue, we propose a new memory-augmented version of Adam that promotes exploration towards flatter minima by using a buffer of critical momentum terms during training. Intuitively, the use of the buffer makes the optimizer overshoot outside the basin of attraction if it is not wide enough. We empirically show that our method improves the performance of several variants of Adam on standard supervised language modelling and image classification tasks.