Laban, Philippe
BingoGuard: LLM Content Moderation Tools with Risk Levels
Yin, Fan, Laban, Philippe, Peng, Xiangyu, Zhou, Yilun, Mao, Yixin, Vats, Vaibhav, Ross, Linnea, Agarwal, Divyansh, Xiong, Caiming, Wu, Chien-Sheng
Malicious content generated by large language models (LLMs) can pose varying degrees of harm. Although existing LLM-based moderators can detect harmful content, they struggle to assess risk levels and may miss lower-risk outputs. Accurate risk assessment allows platforms with different safety thresholds to tailor content filtering and rejection. In this paper, we introduce per-topic severity rubrics for 11 harmful topics and build BingoGuard, an LLM-based moderation system designed to predict both binary safety labels and severity levels. To address the lack of annotations on levels of severity, we propose a scalable generate-then-filter framework that first generates responses across different severity levels and then filters out low-quality responses. Using this framework, we create BingoGuardTrain, a training dataset with 54,897 examples covering a variety of topics, response severity, styles, and BingoGuardTest, a test set with 988 examples explicitly labeled based on our severity rubrics that enables fine-grained analysis on model behaviors on different severity levels. Our BingoGuard-8B, trained on BingoGuardTrain, achieves the state-of-the-art performance on several moderation benchmarks, including WildGuardTest and HarmBench, as well as BingoGuardTest, outperforming best public models, WildGuard, by 4.3\%. Our analysis demonstrates that incorporating severity levels into training significantly enhances detection performance and enables the model to effectively gauge the severity of harmful responses.
Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding
Huang, Kung-Hsiang, Qin, Can, Qiu, Haoyi, Laban, Philippe, Joty, Shafiq, Xiong, Caiming, Wu, Chien-Sheng
Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks, yet they often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison, which are essential for relevant complex tasks like chart understanding and geometric reasoning. In this work, we first investigate the root causes of this deficiency through a suite of probing tasks focusing on basic visual arithmetic. Our analysis reveals that while pre-trained vision encoders typically capture sufficient information, the text decoder often fails to decode it correctly for arithmetic reasoning. To address this, we propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development. CogAlign trains VLMs to recognize invariant properties under visual transformations. We demonstrate that this approach significantly improves the performance of three diverse VLMs on our proposed probing tasks. Furthermore, CogAlign enhances performance by an average of 4.6% on CHOCOLATE and 2.9% on MATH-VISION, outperforming or matching supervised fine-tuning methods while requiring only 60% less training data. These results highlight the effectiveness and generalizability of CogAlign in improving fundamental visual arithmetic capabilities and their transfer to downstream tasks.
SummExecEdit: A Factual Consistency Benchmark in Summarization with Executable Edits
Thorat, Onkar, Laban, Philippe, Wu, Chien-Sheng
Detecting factual inconsistencies in summarization is critical, yet existing benchmarks lack the necessary challenge and interpretability for robust evaluation. In this paper, we introduce SummExecEdit, a novel benchmark leveraging executable edits to assess models on their ability to both detect factual errors and provide accurate explanations. The top-performing model, Claude3-Opus, achieves a joint detection and explanation score of only 0.49 in our benchmark, with individual scores of 0.67 for detection and 0.73 for explanation. Furthermore, we identify four primary types of explanation errors, with 45.4% of errors focusing on completely unrelated parts of the summary.
CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments
Huang, Kung-Hsiang, Prabhakar, Akshara, Dhawan, Sidharth, Mao, Yixin, Wang, Huan, Savarese, Silvio, Xiong, Caiming, Laban, Philippe, Wu, Chien-Sheng
Customer Relationship Management (CRM) systems are vital for modern enterprises, providing a foundation for managing customer interactions and data. Integrating AI agents into CRM systems can automate routine processes and enhance personalized service. However, deploying and evaluating these agents is challenging due to the lack of realistic benchmarks that reflect the complexity of real-world CRM tasks. To address this issue, we introduce CRMArena, a novel benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments. Following guidance from CRM experts and industry best practices, we designed CRMArena with nine customer service tasks distributed across three personas: service agent, analyst, and manager. The benchmark includes 16 commonly used industrial objects (e.g., account, order, knowledge article, case) with high interconnectivity, along with latent variables (e.g., complaint habits, policy violations) to simulate realistic data distributions. Experimental results reveal that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting, and less than 55% even with function-calling abilities. Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments. CRMArena is an open challenge to the community: systems that can reliably complete tasks showcase direct business value in a popular work environment.
Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage
Xie, Kaige, Laban, Philippe, Choubey, Prafulla Kumar, Xiong, Caiming, Wu, Chien-Sheng
Evaluating retrieval-augmented generation (RAG) systems remains challenging, particularly for open-ended questions that lack definitive answers and require coverage of multiple sub-topics. In this paper, we introduce a novel evaluation framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question. We propose decomposing questions into sub-questions and classifying them into three types -- core, background, and follow-up -- to reflect their roles and importance. Using this categorization, we introduce a fine-grained evaluation protocol that provides insights into the retrieval and generation characteristics of RAG systems, including three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat. Interestingly, we find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions, revealing clear opportunities for improvement. Further, sub-question coverage metrics prove effective for ranking responses, achieving 82% accuracy compared to human preference annotations. Lastly, we also demonstrate that leveraging core sub-questions enhances both retrieval and answer generation in a RAG system, resulting in a 74% win rate over the baseline that lacks sub-questions.
Search Engines in an AI Era: The False Promise of Factual and Verifiable Source-Cited Responses
Venkit, Pranav Narayanan, Laban, Philippe, Zhou, Yilun, Mao, Yixin, Wu, Chien-Sheng
Large Language Model (LLM)-based applications are graduating from research prototypes to products serving millions of users, influencing how people write and consume information. A prominent example is the appearance of Answer Engines: LLM-based generative search engines supplanting traditional search engines. Answer engines not only retrieve relevant sources to a user query but synthesize answer summaries that cite the sources. To understand these systems' limitations, we first conducted a study with 21 participants, evaluating interactions with answer vs. traditional search engines and identifying 16 answer engine limitations. From these insights, we propose 16 answer engine design recommendations, linked to 8 metrics. An automated evaluation implementing our metrics on three popular engines (You.com, Perplexity.ai, BingChat) quantifies common limitations (e.g., frequent hallucination, inaccurate citation) and unique features (e.g., variation in answer confidence), with results mirroring user study insights. We release our Answer Engine Evaluation benchmark (AEE) to facilitate transparent evaluation of LLM-based applications.
Can AI writing be salvaged? Mitigating Idiosyncrasies and Improving Human-AI Alignment in the Writing Process through Edits
Chakrabarty, Tuhin, Laban, Philippe, Wu, Chien-Sheng
LLM-based applications are helping people write, and LLM-generated text is making its way into social media, journalism, and our classrooms. However, the differences between LLM-generated and human-written text remain unclear. To explore this, we hired professional writers to edit paragraphs in several creative domains. We first found these writers agree on undesirable idiosyncrasies in LLM-generated text, formalizing it into a seven-category taxonomy (e.g. cliches, unnecessary exposition). Second, we curated the LAMP corpus: 1,057 LLM-generated paragraphs edited by professional writers according to our taxonomy. Analysis of LAMP reveals that none of the LLMs used in our study (GPT4o, Claude-3.5-Sonnet, Llama-3.1-70b) outperform each other in terms of writing quality, revealing common limitations across model families. Third, we explored automatic editing methods to improve LLM-generated text. A large-scale preference annotation confirms that although experts largely prefer text edited by other experts, automatic editing methods show promise in improving alignment between LLM-generated and human-written text.
Investigating the prompt leakage effect and black-box defenses for multi-turn LLM interactions
Agarwal, Divyansh, Fabbri, Alexander R., Laban, Philippe, Risher, Ben, Joty, Shafiq, Xiong, Caiming, Wu, Chien-Sheng
Prompt leakage in large language models (LLMs) poses a significant security and privacy threat, particularly in retrieval-augmented generation (RAG) systems. However, leakage in multi-turn LLM interactions along with mitigation strategies has not been studied in a standardized manner. This paper investigates LLM vulnerabilities against prompt leakage across 4 diverse domains and 10 closed- and open-source LLMs. Our unique multi-turn threat model leverages the LLM's sycophancy effect and our analysis dissects task instruction and knowledge leakage in the LLM response. In a multi-turn setting, our threat model elevates the average attack success rate (ASR) to 86.2%, including a 99% leakage with GPT-4 and claude-1.3. We find that some black-box LLMs like Gemini show variable susceptibility to leakage across domains - they are more likely to leak contextual knowledge in the news domain compared to the medical domain. Our experiments measure specific effects of 6 black-box defense strategies, including a query-rewriter in the RAG scenario. Our proposed multi-tier combination of defenses still has an ASR of 5.3% for black-box LLMs, indicating room for enhancement and future direction for LLM security research.
MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents
Tang, Liyan, Laban, Philippe, Durrett, Greg
Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of "fact-checking" are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to LLMs to check a single response. In this work, we show how to build small models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify pre-existing datasets into a benchmark LLM-AggreFact, collected from recent work on fact-checking and grounding LLM generations. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.
Next Steps for Human-Centered Generative AI: A Technical Perspective
Chen, Xiang 'Anthony', Burke, Jeff, Du, Ruofei, Hong, Matthew K., Jacobs, Jennifer, Laban, Philippe, Li, Dingzeyu, Peng, Nanyun, Willis, Karl D. D., Wu, Chien-Sheng, Zhou, Bolei
Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI). We contribute a comprehensive research agenda that lays out future directions of Generative AI spanning three levels: aligning with human values; assimilating human intents; and augmenting human abilities. By identifying these next-steps, we intend to draw interdisciplinary research teams to pursue a coherent set of emergent ideas in HGAI, focusing on their interested topics while maintaining a coherent big picture of the future work landscape.