Goto

Collaborating Authors

 Løkse, Sigurd


Cauchy-Schwarz Divergence Information Bottleneck for Regression

arXiv.org Machine Learning

The information bottleneck (IB) approach is popular to improve the generalization, robustness and explainability of deep neural networks. Essentially, it aims to find a minimum sufficient representation t by striking a trade-off between a compression term I(x; t) and a prediction term I(y; t), where I(;) refers to the mutual information (MI). MI is for the IB for the most part expressed in terms of the Kullback-Leibler (KL) divergence, which in the regression case corresponds to prediction based on mean squared error (MSE) loss with Gaussian assumption and compression approximated by variational inference. In this paper, we study the IB principle for the regression problem and develop a new way to parameterize the IB with deep neural networks by exploiting favorable properties of the Cauchy-Schwarz (CS) divergence. By doing so, we move away from MSE-based regression and ease estimation by avoiding variational approximations or distributional assumptions. We investigate the improved generalization ability of our proposed CS-IB and demonstrate strong adversarial robustness guarantees. We demonstrate its superior performance on six real-world regression tasks over other popular deep IB approaches. We additionally observe that the solutions discovered by CS-IB always achieve the best trade-off between prediction accuracy and compression ratio in the information plane. The code is available at https://github.com The information bottleneck (IB) principle was proposed by (Tishby et al., 1999) as an informationtheoretic framework for representation learning. It considers extracting information about a target variable y through a correlated variable x. The extracted information is characterized by another variable t, which is (a possibly randomized) function of x. Formally, the IB objective is to learn a representation t that maximizes its predictive power to y subject to some constraints on the amount of information that it carries about x: max I(y; t) s.t.


On the Effects of Self-supervision and Contrastive Alignment in Deep Multi-view Clustering

arXiv.org Artificial Intelligence

Self-supervised learning is a central component in recent approaches to deep multi-view clustering (MVC). However, we find large variations in the development of self-supervision-based methods for deep MVC, potentially slowing the progress of the field. To address this, we present DeepMVC, a unified framework for deep MVC that includes many recent methods as instances. We leverage our framework to make key observations about the effect of self-supervision, and in particular, drawbacks of aligning representations with contrastive learning. Further, we prove that contrastive alignment can negatively influence cluster separability, and that this effect becomes worse when the number of views increases. Motivated by our findings, we develop several new DeepMVC instances with new forms of self-supervision. We conduct extensive experiments and find that (i) in line with our theoretical findings, contrastive alignments decreases performance on datasets with many views; (ii) all methods benefit from some form of self-supervision; and (iii) our new instances outperform previous methods on several datasets. Based on our results, we suggest several promising directions for future research. To enhance the openness of the field, we provide an open-source implementation of DeepMVC, including recent models and our new instances. Our implementation includes a consistent evaluation protocol, facilitating fair and accurate evaluation of methods and components.


The Conditional Cauchy-Schwarz Divergence with Applications to Time-Series Data and Sequential Decision Making

arXiv.org Artificial Intelligence

The Cauchy-Schwarz (CS) divergence was developed by Pr\'{i}ncipe et al. in 2000. In this paper, we extend the classic CS divergence to quantify the closeness between two conditional distributions and show that the developed conditional CS divergence can be simply estimated by a kernel density estimator from given samples. We illustrate the advantages (e.g., the rigorous faithfulness guarantee, the lower computational complexity, the higher statistical power, and the much more flexibility in a wide range of applications) of our conditional CS divergence over previous proposals, such as the conditional KL divergence and the conditional maximum mean discrepancy. We also demonstrate the compelling performance of conditional CS divergence in two machine learning tasks related to time series data and sequential inference, namely the time series clustering and the uncertainty-guided exploration for sequential decision making.


RELAX: Representation Learning Explainability

arXiv.org Machine Learning

Despite the significant improvements that representation learning via self-supervision has led to when learning from unlabeled data, no methods exist that explain what influences the learned representation. We address this need through our proposed approach, RELAX, which is the first approach for attribution-based explanations of representations. Our approach can also model the uncertainty in its explanations, which is essential to produce trustworthy explanations. RELAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself, providing intuitive explanations and significantly outperforming the gradient-based baseline. We provide theoretical interpretations of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning, providing insights into different learning strategies. Finally, we illustrate the usability of RELAX in multi-view clustering and highlight that incorporating uncertainty can be essential for providing low-complexity explanations, taking a crucial step towards explaining representations.


Information Plane Analysis of Deep Neural Networks via Matrix-Based Renyi's Entropy and Tensor Kernels

arXiv.org Machine Learning

Analyzing deep neural networks (DNNs) via information plane (IP) theory has gained tremendous attention recently as a tool to gain insight into, among others, their generalization ability. However, it is by no means obvious how to estimate mutual information (MI) between each hidden layer and the input/desired output, to construct the IP . For instance, hidden layers with many neurons require MI estimators with robustness towards the high dimensionality associated with such layers. MI estimators should also be able to naturally handle convolutional layers, while at the same time being computationally tractable to scale to large networks. None of the existing IP methods to date have been able to study truly deep Con-volutional Neural Networks (CNNs), such as the e.g. In this paper, we propose an IP analysis using the new matrix-based R enyi's entropy coupled with tensor kernels over convolutional layers, leveraging the power of kernel methods to represent properties of the probability distribution independently of the dimensionality of the data. The obtained results shed new light on the previous literature concerning small-scale DNNs, however using a completely new approach. Importantly, the new framework enables us to provide the first comprehensive IP analysis of contemporary large-scale DNNs and CNNs, investigating the different training phases and providing new insights into the training dynamics of large-scale neural networks. Although Deep Neural Networks (DNNs) are at the core of most state-of-the art systems in computer vision, the theoretical understanding of such networks is still not at a satisfactory level (Shwartz-Ziv & Tishby, 2017).


Deep Divergence-Based Approach to Clustering

arXiv.org Machine Learning

A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps.


Spectral Clustering using PCKID - A Probabilistic Cluster Kernel for Incomplete Data

arXiv.org Machine Learning

In this paper, we propose PCKID, a novel, robust, kernel function for spectral clustering, specifically designed to handle incomplete data. By combining posterior distributions of Gaussian Mixture Models for incomplete data on different scales, we are able to learn a kernel for incomplete data that does not depend on any critical hyperparameters, unlike the commonly used RBF kernel. To evaluate our method, we perform experiments on two real datasets. PCKID outperforms the baseline methods for all fractions of missing values and in some cases outperforms the baseline methods with up to 25 percentage points.


Deep Kernelized Autoencoders

arXiv.org Machine Learning

In this paper we introduce the deep kernelized autoencoder, a neural network model that allows an explicit approximation of (i) the mapping from an input space to an arbitrary, user-specified kernel space and (ii) the back-projection from such a kernel space to input space. The proposed method is based on traditional autoencoders and is trained through a new unsupervised loss function. During training, we optimize both the reconstruction accuracy of input samples and the alignment between a kernel matrix given as prior and the inner products of the hidden representations computed by the autoencoder. Kernel alignment provides control over the hidden representation learned by the autoencoder. Experiments have been performed to evaluate both reconstruction and kernel alignment performance. Additionally, we applied our method to emulate kPCA on a denoising task obtaining promising results.