Kwon, Jaerock
InDRiVE: Intrinsic Disagreement based Reinforcement for Vehicle Exploration through Curiosity Driven Generalized World Model
Khanzada, Feeza Khan, Kwon, Jaerock
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving
Delavari, Elahe, Khalil, Aws, Kwon, Jaerock
End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving by learning control commands directly from expert demonstrations. However, traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization. This limitation makes it challenging to quantify the reliability of predicted actions and apply corrections when necessary. In this work, we introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning. The regression head predicts continuous driving actions, while the classification head estimates confidence, enabling a correction mechanism that adjusts actions in low-confidence scenarios, enhancing driving stability. We evaluate our approach in a closed-loop setting within the CARLA simulator, demonstrating its ability to detect uncertain actions, estimate confidence, and apply real-time corrections. Experimental results show that our method reduces lane deviation and improves trajectory accuracy by up to 50%, outperforming conventional regression-only models. These findings highlight the potential of classification-guided confidence estimation in enhancing the robustness of vision-based imitation learning for autonomous driving. The source code is available at https://github.com/ElaheDlv/Confidence_Aware_IL.
NDST: Neural Driving Style Transfer for Human-Like Vision-Based Autonomous Driving
Kim, Donghyun, Khalil, Aws, Nam, Haewoon, Kwon, Jaerock
Autonomous Vehicles (AV) and Advanced Driver Assistant Systems (ADAS) prioritize safety over comfort. The intertwining factors of safety and comfort emerge as pivotal elements in ensuring the effectiveness of Autonomous Driving (AD). Users often experience discomfort when AV or ADAS drive the vehicle on their behalf. Providing a personalized human-like AD experience, tailored to match users' unique driving styles while adhering to safety prerequisites, presents a significant opportunity to boost the acceptance of AVs. This paper proposes a novel approach, Neural Driving Style Transfer (NDST), inspired by Neural Style Transfer (NST), to address this issue. NDST integrates a Personalized Block (PB) into the conventional Baseline Driving Model (BDM), allowing for the transfer of a user's unique driving style while adhering to safety parameters. The PB serves as a self-configuring system, learning and adapting to an individual's driving behavior without requiring modifications to the BDM. This approach enables the personalization of AV models, aligning the driving style more closely with user preferences while ensuring baseline safety critical actuation. Two contrasting driving styles (Style A and Style B) were used to validate the proposed NDST methodology, demonstrating its efficacy in transferring personal driving styles to the AV system. Our work highlights the potential of NDST to enhance user comfort in AVs by providing a personalized and familiar driving experience. The findings affirm the feasibility of integrating NDST into existing AV frameworks to bridge the gap between safety and individualized driving styles, promoting wider acceptance and improved user experiences.
Towards Human-Like Driving: Active Inference in Autonomous Vehicle Control
Delavari, Elahe, Moore, John, Hong, Junho, Kwon, Jaerock
This paper presents a novel approach to Autonomous Vehicle (AV) control through the application of active inference, a theory derived from neuroscience that conceptualizes the brain as a predictive machine. Traditional autonomous driving systems rely heavily on Modular Pipelines, Imitation Learning, or Reinforcement Learning, each with inherent limitations in adaptability, generalization, and computational efficiency. Active inference addresses these challenges by minimizing prediction error (termed "surprise") through a dynamic model that balances perception and action. Our method integrates active inference with deep learning to manage lateral control in AVs, enabling them to perform lane following maneuvers within a simulated urban environment. We demonstrate that our model, despite its simplicity, effectively learns and generalizes from limited data without extensive retraining, significantly reducing computational demands. The proposed approach not only enhances the adaptability and performance of AVs in dynamic scenarios but also aligns closely with human-like driving behavior, leveraging a generative model to predict and adapt to environmental changes. Results from extensive experiments in the CARLA simulator show promising outcomes, outperforming traditional methods in terms of adaptability and efficiency, thereby advancing the potential of active inference in real-world autonomous driving applications.