Kwak, Jun-young
Urban Security: Game-Theoretic Resource Allocation in Networked Domains
Tsai, Jason (University of Southern California) | Yin, Zhengyu (University of Southern California) | Kwak, Jun-young (University of Southern California) | Kempe, David (University of Southern California) | Kiekintveld, Christopher (University of Southern California) | Tambe, Milind (University of Southern California)
Law enforcement agencies frequently must allocate limited resources to protect targets embedded in a network, such as important buildings in a city road network. Since intelligent attackers may observe and exploit patterns in the allocation, it is crucial that the allocations be randomized. We cast this problem as an attacker-defender Stackelberg game: the defender’s goal is to obtain an optimal mixed strategy for allocating resources. The defender’s strategy space is exponential in the number of resources, and the attacker’s exponential in the network size. Existing algorithms are therefore useless for all but the smallest networks. We present a solution approach based on two key ideas: (i) A polynomial-sized game model obtained via an approximation of the strategy space, solved efficiently using a linear program; (ii) Two efficient techniques that map solutions from the approximate game to the original, with proofs of correctness under certain assumptions. We present in-depth experimental results, including an evaluation on part of the Mumbai road network.
Exploiting Coordination Locales in Distributed POMDPs via Social Model Shaping
Varakantham, Pradeep (Singapore Management University) | Kwak, Jun-young (University of Southern California) | Taylor, Matthew (University of Southern California) | Marecki, Janusz (IBM T. J Watson Research Center) | Scerri, Paul (Carnegie Mellon University) | Tambe, Milind (University of Southern California)
Distributed POMDPs provide an expressive framework for modeling multiagent collaboration problems, but NEXP-Complete complexity hinders their scalability and application in real-world domains. This paper introduces a subclass of distributed POMDPs, and TREMOR, an algorithm to solve such distributed POMDPs. The primary novelty of TREMOR is that agents plan individually with a single agent POMDP solver and use social model shaping to implicitly coordinate with other agents. Experiments demonstrate that TREMOR can provide solutions orders of magnitude faster than existing algorithms while achieving comparable, or even superior, solution quality.