Kuzmin, Gleb
Uncertainty-aware abstention in medical diagnosis based on medical texts
Vazhentsev, Artem, Sviridov, Ivan, Barseghyan, Alvard, Kuzmin, Gleb, Panchenko, Alexander, Nesterov, Aleksandr, Shelmanov, Artem, Panov, Maxim
This study addresses the critical issue of reliability for AI-assisted medical diagnosis. We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis. Such selective prediction (or abstention) approaches are usually based on the modeling predictive uncertainty of machine learning models involved. This study explores uncertainty quantification in machine learning models for medical text analysis, addressing diverse tasks across multiple datasets. We focus on binary mortality prediction from textual data in MIMIC-III, multi-label medical code prediction using ICD-10 codes from MIMIC-IV, and multi-class classification with a private outpatient visits dataset. Additionally, we analyze mental health datasets targeting depression and anxiety detection, utilizing various text-based sources, such as essays, social media posts, and clinical descriptions. In addition to comparing uncertainty methods, we introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks. Our results provide a detailed comparison of uncertainty quantification methods. They demonstrate the effectiveness of HUQ-2 in capturing and evaluating uncertainty, paving the way for more reliable and interpretable applications in medical text analysis.
Mental Disorders Detection in the Era of Large Language Models
Kuzmin, Gleb, Strepetov, Petr, Stankevich, Maksim, Shelmanov, Artem, Smirnov, Ivan
This paper compares the effectiveness of traditional machine learning methods, encoder-based models, and large language models (LLMs) on the task of detecting depression and anxiety. Five datasets were considered, each differing in format and the method used to define the target pathology class. We tested AutoML models based on linguistic features, several variations of encoder-based Transformers such as BERT, and state-of-the-art LLMs as pathology classification models. The results demonstrated that LLMs outperform traditional methods, particularly on noisy and small datasets where training examples vary significantly in text length and genre. However, psycholinguistic features and encoder-based models can achieve performance comparable to language models when trained on texts from individuals with clinically confirmed depression, highlighting their potential effectiveness in targeted clinical applications.
Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification
Fadeeva, Ekaterina, Rubashevskii, Aleksandr, Shelmanov, Artem, Petrakov, Sergey, Li, Haonan, Mubarak, Hamdy, Tsymbalov, Evgenii, Kuzmin, Gleb, Panchenko, Alexander, Baldwin, Timothy, Nakov, Preslav, Panov, Maxim
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factually correct, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of a particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for seven LLMs and four languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.