Kurakin, Alexey
Private prediction for large-scale synthetic text generation
Amin, Kareem, Bie, Alex, Kong, Weiwei, Kurakin, Alexey, Ponomareva, Natalia, Syed, Umar, Terzis, Andreas, Vassilvitskii, Sergei
We present an approach for generating differentially private synthetic text using large language models (LLMs), via private prediction. In the private prediction framework, we only require the output synthetic data to satisfy differential privacy guarantees. This is in contrast to approaches that train a generative model on potentially sensitive user-supplied source data and seek to ensure the model itself is safe to release. We prompt a pretrained LLM with source data, but ensure that next-token predictions are made with differential privacy guarantees. Previous work in this paradigm reported generating a small number of examples (<10) at reasonable privacy levels, an amount of data that is useful only for downstream in-context learning or prompting. In contrast, we make changes that allow us to generate thousands of high-quality synthetic data points, greatly expanding the set of potential applications. Our improvements come from an improved privacy analysis and a better private selection mechanism, which makes use of the equivalence between the softmax layer for sampling tokens in LLMs and the exponential mechanism. Furthermore, we introduce a novel use of public predictions via the sparse vector technique, in which we do not pay privacy costs for tokens that are predictable without sensitive data; we find this to be particularly effective for structured data.
Diffusion Denoising as a Certified Defense against Clean-label Poisoning
Hong, Sanghyun, Carlini, Nicholas, Kurakin, Alexey
We present a certified defense to clean-label poisoning attacks. These attacks work by injecting a small number of poisoning samples (e.g., 1%) that contain $p$-norm bounded adversarial perturbations into the training data to induce a targeted misclassification of a test-time input. Inspired by the adversarial robustness achieved by $denoised$ $smoothing$, we show how an off-the-shelf diffusion model can sanitize the tampered training data. We extensively test our defense against seven clean-label poisoning attacks and reduce their attack success to 0-16% with only a negligible drop in the test time accuracy. We compare our defense with existing countermeasures against clean-label poisoning, showing that the defense reduces the attack success the most and offers the best model utility. Our results highlight the need for future work on developing stronger clean-label attacks and using our certified yet practical defense as a strong baseline to evaluate these attacks.
DART: A Principled Approach to Adversarially Robust Unsupervised Domain Adaptation
Wang, Yunjuan, Hazimeh, Hussein, Ponomareva, Natalia, Kurakin, Alexey, Hammoud, Ibrahim, Arora, Raman
Distribution shifts and adversarial examples are two major challenges for deploying machine learning models. While these challenges have been studied individually, their combination is an important topic that remains relatively under-explored. In this work, we study the problem of adversarial robustness under a common setting of distribution shift - unsupervised domain adaptation (UDA). Specifically, given a labeled source domain $D_S$ and an unlabeled target domain $D_T$ with related but different distributions, the goal is to obtain an adversarially robust model for $D_T$. The absence of target domain labels poses a unique challenge, as conventional adversarial robustness defenses cannot be directly applied to $D_T$. To address this challenge, we first establish a generalization bound for the adversarial target loss, which consists of (i) terms related to the loss on the data, and (ii) a measure of worst-case domain divergence. Motivated by this bound, we develop a novel unified defense framework called Divergence Aware adveRsarial Training (DART), which can be used in conjunction with a variety of standard UDA methods; e.g., DANN [Ganin and Lempitsky, 2015]. DART is applicable to general threat models, including the popular $\ell_p$-norm model, and does not require heuristic regularizers or architectural changes. We also release DomainRobust: a testbed for evaluating robustness of UDA models to adversarial attacks. DomainRobust consists of 4 multi-domain benchmark datasets (with 46 source-target pairs) and 7 meta-algorithms with a total of 11 variants. Our large-scale experiments demonstrate that on average, DART significantly enhances model robustness on all benchmarks compared to the state of the art, while maintaining competitive standard accuracy. The relative improvement in robustness from DART reaches up to 29.2% on the source-target domain pairs considered.
RETVec: Resilient and Efficient Text Vectorizer
Bursztein, Elie, Zhang, Marina, Vallis, Owen, Jia, Xinyu, Kurakin, Alexey
This paper describes RETVec, an efficient, resilient, and multilingual text vectorizer designed for neural-based text processing. RETVec combines a novel character encoding with an optional small embedding model to embed words into a 256-dimensional vector space. The RETVec embedding model is pre-trained using pair-wise metric learning to be robust against typos and character-level adversarial attacks. In this paper, we evaluate and compare RETVec to state-of-the-art vectorizers and word embeddings on popular model architectures and datasets. These comparisons demonstrate that RETVec leads to competitive, multilingual models that are significantly more resilient to typos and adversarial text attacks. RETVec is available under the Apache 2 license at https://github.com/google-research/retvec.
Harnessing large-language models to generate private synthetic text
Kurakin, Alexey, Ponomareva, Natalia, Syed, Umar, MacDermed, Liam, Terzis, Andreas
Differentially private (DP) training methods like DP-SGD can protect sensitive training data by ensuring that ML models will not reveal private information. An alternative approach, which this paper studies, is to use a sensitive dataset to generate a new synthetic dataset which is differentially private with respect to the original data. Doing so has several advantages: synthetic data can be reused for other tasks (including for hyper parameter tuning), retained indefinitely, or shared with third parties without sacrificing privacy. However, obtaining DP data is much harder than introducing DP during training. To make it feasible for text, recent work has utilized public data by starting with a pre-trained generative language model and privately finetuning it on sensitive data. This model can be used to sample a DP synthetic dataset. While this strategy seems straightforward, executing it has proven problematic. Previous approaches either show significant performance loss, or have, as we show, critical design flaws. In this paper we demonstrate that a proper training objective along with tuning fewer parameters results in excellent DP synthetic data quality. Our approach is competitive with direct DP-training of downstream classifiers in terms of performance on downstream tasks. We also demonstrate that our DP synthetic data is not only useful for downstream classifier training, but also to tune those same models.
Publishing Efficient On-device Models Increases Adversarial Vulnerability
Hong, Sanghyun, Carlini, Nicholas, Kurakin, Alexey
Recent increases in the computational demands of deep neural networks (DNNs) have sparked interest in efficient deep learning mechanisms, e.g., quantization or pruning. These mechanisms enable the construction of a small, efficient version of commercial-scale models with comparable accuracy, accelerating their deployment to resource-constrained devices. In this paper, we study the security considerations of publishing on-device variants of large-scale models. We first show that an adversary can exploit on-device models to make attacking the large models easier. In evaluations across 19 DNNs, by exploiting the published on-device models as a transfer prior, the adversarial vulnerability of the original commercial-scale models increases by up to 100x. We then show that the vulnerability increases as the similarity between a full-scale and its efficient model increase. Based on the insights, we propose a defense, $similarity$-$unpairing$, that fine-tunes on-device models with the objective of reducing the similarity. We evaluated our defense on all the 19 DNNs and found that it reduces the transferability up to 90% and the number of queries required by a factor of 10-100x. Our results suggest that further research is needed on the security (or even privacy) threats caused by publishing those efficient siblings.
Differentially Private Image Classification from Features
Mehta, Harsh, Krichene, Walid, Thakurta, Abhradeep, Kurakin, Alexey, Cutkosky, Ashok
Leveraging transfer learning has recently been shown to be an effective strategy for training large models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that linear regression is much more effective than logistic regression from both privacy and computational aspects, especially at stricter epsilon values ($\epsilon < 1$). On the optimization side, we also explore using Newton's method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is effective at lower epsilons while Newton's method is effective at larger epsilon values. To combine the benefits of both, we propose a novel algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all $\epsilon$ values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of $\epsilon$ typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88\% under (8, $8 * 10^{-7}$)-DP and 84.3\% under (0.1, $8 * 10^{-7}$)-DP.
Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
Dathathri, Sumanth, Dvijotham, Krishnamurthy, Kurakin, Alexey, Raghunathan, Aditi, Uesato, Jonathan, Bunel, Rudy, Shankar, Shreya, Steinhardt, Jacob, Goodfellow, Ian, Liang, Percy, Kohli, Pushmeet
Convex relaxations have emerged as a promising approach for verifying desirable properties of neural networks like robustness to adversarial perturbations. Widely used Linear Programming (LP) relaxations only work well when networks are trained to facilitate verification. This precludes applications that involve verification-agnostic networks, i.e., networks not specially trained for verification. On the other hand, semidefinite programming (SDP) relaxations have successfully be applied to verification-agnostic networks, but do not currently scale beyond small networks due to poor time and space asymptotics. In this work, we propose a first-order dual SDP algorithm that (1) requires memory only linear in the total number of network activations, (2) only requires a fixed number of forward/backward passes through the network per iteration. By exploiting iterative eigenvector methods, we express all solver operations in terms of forward and backward passes through the network, enabling efficient use of hardware like GPUs/TPUs. For two verification-agnostic networks on MNIST and CIFAR-10, we significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively. We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
On Evaluating Adversarial Robustness
Carlini, Nicholas, Athalye, Anish, Papernot, Nicolas, Brendel, Wieland, Rauber, Jonas, Tsipras, Dimitris, Goodfellow, Ian, Madry, Aleksander, Kurakin, Alexey
Correctly evaluating defenses against adversarial examples has proven to be extremely difficult. Despite the significant amount of recent work attempting to design defenses that withstand adaptive attacks, few have succeeded; most papers that propose defenses are quickly shown to be incorrect. We believe a large contributing factor is the difficulty of performing security evaluations. In this paper, we discuss the methodological foundations, review commonly accepted best practices, and suggest new methods for evaluating defenses to adversarial examples. We hope that both researchers developing defenses as well as readers and reviewers who wish to understand the completeness of an evaluation consider our advice in order to avoid common pitfalls.
Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
Elsayed, Gamaleldin, Shankar, Shreya, Cheung, Brian, Papernot, Nicolas, Kurakin, Alexey, Goodfellow, Ian, Sohl-Dickstein, Jascha
Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich. However, it is still an open question whether humans are prone to similar mistakes. Here, we address this question by leveraging recent techniques that transfer adversarial examples from computer vision models with known parameters and architecture to other models with unknown parameters and architecture, and by matching the initial processing of the human visual system. We find that adversarial examples that strongly transfer across computer vision models influence the classifications made by time-limited human observers.