Goto

Collaborating Authors

 Kumar, Pawan


Humanity's Last Exam

arXiv.org Artificial Intelligence

Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.


A Gauss-Newton Approach for Min-Max Optimization in Generative Adversarial Networks

arXiv.org Artificial Intelligence

A novel first-order method is proposed for training generative adversarial networks (GANs). It modifies the Gauss-Newton method to approximate the min-max Hessian and uses the Sherman-Morrison inversion formula to calculate the inverse. The method corresponds to a fixed-point method that ensures necessary contraction. To evaluate its effectiveness, numerical experiments are conducted on various datasets commonly used in image generation tasks, such as MNIST, Fashion MNIST, CIFAR10, FFHQ, and LSUN. Our method is capable of generating high-fidelity images with greater diversity across multiple datasets. It also achieves the highest inception score for CIFAR10 among all compared methods, including state-of-the-art second-order methods. Additionally, its execution time is comparable to that of first-order min-max methods.


Enhancing ML model accuracy for Digital VLSI circuits using diffusion models: A study on synthetic data generation

arXiv.org Artificial Intelligence

Generative AI has seen remarkable growth over the past few years, with diffusion models being state-of-the-art for image generation. This study investigates the use of diffusion models in generating artificial data generation for electronic circuits for enhancing the accuracy of subsequent machine learning models in tasks such as performance assessment, design, and testing when training data is usually known to be very limited. We utilize simulations in the HSPICE design environment with 22nm CMOS technology nodes to obtain representative real training data for our proposed diffusion model. Our results demonstrate the close resemblance of synthetic data using diffusion model to real data. We validate the quality of generated data, and demonstrate that data augmentation certainly effective in predictive analysis of VLSI design for digital circuits.


Alpha Elimination: Using Deep Reinforcement Learning to Reduce Fill-In during Sparse Matrix Decomposition

arXiv.org Artificial Intelligence

A large number of computational and scientific methods commonly require decomposing a sparse matrix into triangular factors as LU decomposition. A common problem faced during this decomposition is that even though the given matrix may be very sparse, the decomposition may lead to a denser triangular factors due to fill-in. A significant fill-in may lead to prohibitively larger computational costs and memory requirement during decomposition as well as during the solve phase. To this end, several heuristic sparse matrix reordering methods have been proposed to reduce fill-in before the decomposition. However, finding an optimal reordering algorithm that leads to minimal fill-in during such decomposition is known to be a NP-hard problem. A reinforcement learning based approach is proposed for this problem. The sparse matrix reordering problem is formulated as a single player game. More specifically, Monte-Carlo tree search in combination with neural network is used as a decision making algorithm to search for the best move in our game. The proposed method, Alpha Elimination is found to produce significantly lesser non-zeros in the LU decomposition as compared to existing state-of-the-art heuristic algorithms with little to no increase in overall running time of the algorithm.


Riemannian Hamiltonian methods for min-max optimization on manifolds

arXiv.org Artificial Intelligence

In this paper, we study min-max optimization problems on Riemannian manifolds. We introduce a Riemannian Hamiltonian function, minimization of which serves as a proxy for solving the original min-max problems. Under the Riemannian Polyak--{\L}ojasiewicz condition on the Hamiltonian function, its minimizer corresponds to the desired min-max saddle point. We also provide cases where this condition is satisfied. For geodesic-bilinear optimization in particular, solving the proxy problem leads to the correct search direction towards global optimality, which becomes challenging with the min-max formulation. To minimize the Hamiltonian function, we propose Riemannian Hamiltonian methods (RHM) and present their convergence analyses. We extend RHM to include consensus regularization and to the stochastic setting. We illustrate the efficacy of the proposed RHM in applications such as subspace robust Wasserstein distance, robust training of neural networks, and generative adversarial networks.


Reinforcement Learning Based Sensor Optimization for Bio-markers

arXiv.org Artificial Intelligence

Radio frequency (RF) biosensors, in particular those based on inter-digitated capacitors (IDCs), are pivotal in areas like biomedical diagnosis, remote sensing, and wireless communication. Despite their advantages of low cost and easy fabrication, their sensitivity can be hindered by design imperfections, environmental factors, and circuit noise. This paper investigates enhancing the sensitivity of IDC-based RF sensors using novel reinforcement learning based Binary Particle Swarm Optimization (RLBPSO), and it is compared to Ant Colony Optimization (ACO), and other state-of-the-art methods. By focusing on optimizing design parameters like electrode design and finger width, the proposed study found notable improvements in sensor sensitivity. The proposed RLBPSO method shows best optimized design for various frequency ranges when compared to current state-of-the-art methods.


Explainable machine learning to enable high-throughput electrical conductivity optimization of doped conjugated polymers

arXiv.org Artificial Intelligence

The combination of high-throughput experimentation techniques and machine learning (ML) has recently ushered in a new era of accelerated material discovery, enabling the identification of materials with cutting-edge properties. However, the measurement of certain physical quantities remains challenging to automate. Specifically, meticulous process control, experimentation and laborious measurements are required to achieve optimal electrical conductivity in doped polymer materials. We propose a ML approach, which relies on readily measured absorbance spectra, to accelerate the workflow associated with measuring electrical conductivity. The first ML model (classification model), accurately classifies samples with a conductivity >~25 to 100 S/cm, achieving a maximum of 100% accuracy rate. For the subset of highly conductive samples, we employed a second ML model (regression model), to predict their conductivities, yielding an impressive test R2 value of 0.984. To validate the approach, we showed that the models, neither trained on the samples with the two highest conductivities of 498 and 506 S/cm, were able to, in an extrapolative manner, correctly classify and predict them at satisfactory levels of errors. The proposed ML workflow results in an improvement in the efficiency of the conductivity measurements by 89% of the maximum achievable using our experimental techniques. Furthermore, our approach addressed the common challenge of the lack of explainability in ML models by exploiting bespoke mathematical properties of the descriptors and ML model, allowing us to gain corroborated insights into the spectral influences on conductivity. Through this study, we offer an accelerated pathway for optimizing the properties of doped polymer materials while showcasing the valuable insights that can be derived from purposeful utilization of ML in experimental science.


marl-jax: Multi-Agent Reinforcement Leaning Framework

arXiv.org Artificial Intelligence

Recent advances in Reinforcement Learning (RL) have led to many exciting applications. These advancements have been driven by improvements in both algorithms and engineering, which have resulted in faster training of RL agents. We present marl-jax, a multi-agent reinforcement learning software package for training and evaluating social generalization of the agents. The package is designed for training a population of agents in multi-agent environments and evaluating their ability to generalize to diverse background agents. It is built on top of DeepMind's JAX ecosystem~\cite{deepmind2020jax} and leverages the RL ecosystem developed by DeepMind. Our framework marl-jax is capable of working in cooperative and competitive, simultaneous-acting environments with multiple agents. The package offers an intuitive and user-friendly command-line interface for training a population and evaluating its generalization capabilities. In conclusion, marl-jax provides a valuable resource for researchers interested in exploring social generalization in the context of MARL. The open-source code for marl-jax is available at: \href{https://github.com/kinalmehta/marl-jax}{https://github.com/kinalmehta/marl-jax}


Nonnegative Low-Rank Tensor Completion via Dual Formulation with Applications to Image and Video Completion

arXiv.org Artificial Intelligence

Recent approaches to the tensor completion problem have often overlooked the nonnegative structure of the data. We consider the problem of learning a nonnegative low-rank tensor, and using duality theory, we propose a novel factorization of such tensors. The factorization decouples the nonnegative constraints from the low-rank constraints. The resulting problem is an optimization problem on manifolds, and we propose a variant of Riemannian conjugate gradients to solve it. We test the proposed algorithm across various tasks such as colour image inpainting, video completion, and hyperspectral image completion. Experimental results show that the proposed method outperforms many state-of-the-art tensor completion algorithms.


Structured Low-Rank Tensor Learning

arXiv.org Artificial Intelligence

We consider the problem of learning low-rank tensors from partial observations with structural constraints, and propose a novel factorization of such tensors, which leads to a simpler optimization problem. The resulting problem is an optimization problem on manifolds. We develop first-order and second-order Riemannian optimization algorithms to solve it. The duality gap for the resulting problem is derived, and we experimentally verify the correctness of the proposed algorithm. We demonstrate the algorithm on nonnegative constraints and Hankel constraints.