Kumar, Nishant
FusionINN: Decomposable Image Fusion for Brain Tumor Monitoring
Kumar, Nishant, Tao, Ziyan, Singh, Jaikirat, Li, Yang, Sun, Peiwen, Zhao, Binghui, Gumhold, Stefan
Image fusion typically employs non-invertible neural networks to merge multiple source images into a single fused image. However, for clinical experts, solely relying on fused images may be insufficient for making diagnostic decisions, as the fusion mechanism blends features from source images, thereby making it difficult to interpret the underlying tumor pathology. We introduce FusionINN, a novel decomposable image fusion framework, capable of efficiently generating fused images and also decomposing them back to the source images. FusionINN is designed to be bijective by including a latent image alongside the fused image, while ensuring minimal transfer of information from the source images to the latent representation. To the best of our knowledge, we are the first to investigate the decomposability of fused images, which is particularly crucial for life-sensitive applications such as medical image fusion compared to other tasks like multi-focus or multi-exposure image fusion. Our extensive experimentation validates FusionINN over existing discriminative and generative fusion methods, both subjectively and objectively. Moreover, compared to a recent denoising diffusion-based fusion model, our approach offers faster and qualitatively better fusion results.
Examining Computational Performance of Unsupervised Concept Drift Detection: A Survey and Beyond
Werner, Elias, Kumar, Nishant, Lieber, Matthias, Torge, Sunna, Gumhold, Stefan, Nagel, Wolfgang E.
Concept drift detection is crucial for many AI systems to ensure the system's reliability. These systems often have to deal with large amounts of data or react in real time. Thus, drift detectors must meet computational requirements or constraints with a comprehensive performance evaluation. However, so far, the focus of developing drift detectors is on detection quality, e.g.~accuracy, but not on computational performance, such as running time. We show that the previous works consider computational performance only as a secondary objective and do not have a benchmark for such evaluation. Hence, we propose a set of metrics that considers both, computational performance and detection quality. Among others, our set of metrics includes the Relative Runtime Overhead RRO to evaluate a drift detector's computational impact on an AI system. This work focuses on unsupervised drift detectors, not being restricted to the availability of labeled data. We measure the computational performance based on the RRO and memory consumption of four available unsupervised drift detectors on five different data sets. The range of the RRO reaches from 1.01 to 20.15. Moreover, we measure state-of-the-art detection quality metrics to discuss our evaluation results and show the necessity of thorough computational performance considerations for drift detectors. Additionally, we highlight and explain requirements for a comprehensive benchmark of drift detectors. Our investigations can also be extended for supervised drift detection.
Quantile-based Maximum Likelihood Training for Outlier Detection
Taghikhah, Masoud, Kumar, Nishant, Šegvić, Siniša, Eslami, Abouzar, Gumhold, Stefan
Discriminative learning effectively predicts true object class for image classification. However, it often results in false positives for outliers, posing critical concerns in applications like autonomous driving and video surveillance systems. Previous attempts to address this challenge involved training image classifiers through contrastive learning using actual outlier data or synthesizing outliers for self-supervised learning. Furthermore, unsupervised generative modeling of inliers in pixel space has shown limited success for outlier detection. In this work, we introduce a quantile-based maximum likelihood objective for learning the inlier distribution to improve the outlier separation during inference. Our approach fits a normalizing flow to pre-trained discriminative features and detects the outliers according to the evaluated log-likelihood. The experimental evaluation demonstrates the effectiveness of our method as it surpasses the performance of the state-of-the-art unsupervised methods for outlier detection. The results are also competitive compared with a recent self-supervised approach for outlier detection. Our work allows to reduce dependency on well-sampled negative training data, which is especially important for domains like medical diagnostics or remote sensing.
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Timans, Alexander, Wiedemann, Nina, Kumar, Nishant, Hong, Ye, Raubal, Martin
Despite the strong predictive performance of deep learning models for traffic prediction, their widespread deployment in real-world intelligent transportation systems has been restrained by a lack of interpretability. Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning, improve decision-making and enhance model deployment potential. To gain a comprehensive picture of the usefulness of existing UQ methods for traffic prediction and the relation between obtained uncertainties and city-wide traffic dynamics, we investigate their application to a large-scale image-based traffic dataset spanning multiple cities and time periods. We compare two epistemic and two aleatoric UQ methods on both temporal and spatio-temporal transfer tasks, and find that meaningful uncertainty estimates can be recovered. We further demonstrate how uncertainty estimates can be employed for unsupervised outlier detection on changes in city traffic dynamics. We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow. Our work presents a further step towards boosting uncertainty awareness in traffic prediction tasks, and aims to highlight the value contribution of UQ methods to a better understanding of city traffic dynamics.
Learning to reconstruct the bubble distribution with conductivity maps using Invertible Neural Networks and Error Diffusion
Kumar, Nishant, Krause, Lukas, Wondrak, Thomas, Eckert, Sven, Eckert, Kerstin, Gumhold, Stefan
Electrolysis is crucial for eco-friendly hydrogen production, but gas bubbles generated during the process hinder reactions, reduce cell efficiency, and increase energy consumption. Additionally, these gas bubbles cause changes in the conductivity inside the cell, resulting in corresponding variations in the induced magnetic field around the cell. Therefore, measuring these gas bubble-induced magnetic field fluctuations using external magnetic sensors and solving the inverse problem of Biot-Savart's Law allows for estimating the conductivity in the cell and, thus, bubble size and location. However, determining high-resolution conductivity maps from only a few induced magnetic field measurements is an ill-posed inverse problem. To overcome this, we exploit Invertible Neural Networks (INNs) to reconstruct the conductivity field. Our qualitative results and quantitative evaluation using random error diffusion show that INN achieves far superior performance compared to Tikhonov regularization.
InFlow: Robust outlier detection utilizing Normalizing Flows
Kumar, Nishant, Hanfeld, Pia, Hecht, Michael, Bussmann, Michael, Gumhold, Stefan, Hoffmann, Nico
Normalizing flows are prominent deep generative models that provide tractable probability distributions and efficient density estimation. However, they are well known to fail while detecting Out-of-Distribution (OOD) inputs as they directly encode the local features of the input representations in their latent space. In this paper, we solve this overconfidence issue of normalizing flows by demonstrating that flows, if extended by an attention mechanism, can reliably detect outliers including adversarial attacks. Our approach does not require outlier data for training and we showcase the efficiency of our method for OOD detection by reporting state-of-the-art performance in diverse experimental settings.
Applications of deep learning in traffic congestion alleviation: A survey
Kumar, Nishant, Raubal, Martin
Prediction tasks related to congestion are targeted at improving the level of service of the transportation network. With increasing access to larger datasets of higher resolution, the relevance of deep learning in such prediction tasks, is increasing. Several comprehensive survey papers in recent years have summarised the deep learning applications in the transportation domain. However, the system dynamics of the transportation network vary greatly between the non-congested state and the congested state -- thereby necessitating the need for a clear understanding of the challenges specific to congestion prediction. In this survey, we present the current state of deep learning applications in the tasks related to detection, prediction and propagation of congestion. Recurrent and non-recurrent congestion are discussed separately. Our survey leads us to uncover inherent challenges and gaps in the current state of research. Finally, we present some suggestions for future research directions as answers to the identified challenges.