Goto

Collaborating Authors

 Kristensson, Per Ola


Human-inspired Perspectives: A Survey on AI Long-term Memory

arXiv.org Artificial Intelligence

With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.


Generative AI for Accessible and Inclusive Extended Reality

arXiv.org Artificial Intelligence

Artificial Intelligence-Generated Content (AIGC) has the potential to transform how people build and interact with virtual environments. Within this paper, we discuss potential benefits but also challenges that AIGC has for the creation of inclusive and accessible virtual environments. Specifically, we touch upon the decreased need for 3D modeling expertise, benefits of symbolic-only as well as multimodal input, 3D content editing, and 3D model accessibility as well as foundation model-specific challenges.


Analyzing Multimodal Interaction Strategies for LLM-Assisted Manipulation of 3D Scenes

arXiv.org Artificial Intelligence

As more applications of large language models (LLMs) for 3D content for immersive environments emerge, it is crucial to study user behaviour to identify interaction patterns and potential barriers to guide the future design of immersive content creation and editing systems which involve LLMs. In an empirical user study with 12 participants, we combine quantitative usage data with post-experience questionnaire feedback to reveal common interaction patterns and key barriers in LLM-assisted 3D scene editing systems. We identify opportunities for improving natural language interfaces in 3D design tools and propose design recommendations for future LLM-integrated 3D content creation systems. Through an empirical study, we demonstrate that LLM-assisted interactive systems can be used productively in immersive environments.


Large Language Model-assisted Speech and Pointing Benefits Multiple 3D Object Selection in Virtual Reality

arXiv.org Artificial Intelligence

Selection of occluded objects is a challenging problem in virtual reality, even more so if multiple objects are involved. With the advent of new artificial intelligence technologies, we explore the possibility of leveraging large language models to assist multi-object selection tasks in virtual reality via a multimodal speech and raycast interaction technique. We validate the findings in a comparative user study (n=24), where participants selected target objects in a virtual reality scene with different levels of scene perplexity. The performance metrics and user experience metrics are compared against a mini-map based occluded object selection technique that serves as the baseline. Results indicate that the introduced technique, AssistVR, outperforms the baseline technique when there are multiple target objects. Contrary to the common belief for speech interfaces, AssistVR was able to outperform the baseline even when the target objects were difficult to reference verbally. This work demonstrates the viability and interaction potential of an intelligent multimodal interactive system powered by large laguage models. Based on the results, we discuss the implications for design of future intelligent multimodal interactive systems in immersive environments.


Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques

arXiv.org Artificial Intelligence

Text entry is an essential task in our day-to-day digital interactions. Numerous intelligent features have been developed to streamline this process, making text entry more effective, efficient, and fluid. These improvements include sentence prediction and user personalization. However, as deep learning-based language models become the norm for these advanced features, the necessity for data collection and model fine-tuning increases. These challenges can be mitigated by harnessing the in-context learning capability of large language models such as GPT-3.5. This unique feature allows the language model to acquire new skills through prompts, eliminating the need for data collection and fine-tuning. Consequently, large language models can learn various text prediction techniques. We initially showed that, for a sentence prediction task, merely prompting GPT-3.5 surpassed a GPT-2 backed system and is comparable with a fine-tuned GPT-3.5 model, with the latter two methods requiring costly data collection, fine-tuning and post-processing. However, the task of prompting large language models to specialize in specific text prediction tasks can be challenging, particularly for designers without expertise in prompt engineering. To address this, we introduce Promptor, a conversational prompt generation agent designed to engage proactively with designers. Promptor can automatically generate complex prompts tailored to meet specific needs, thus offering a solution to this challenge. We conducted a user study involving 24 participants creating prompts for three intelligent text entry tasks, half of the participants used Promptor while the other half designed prompts themselves. The results show that Promptor-designed prompts result in a 35% increase in similarity and 22% in coherence over those by designers.


Encode-Store-Retrieve: Enhancing Memory Augmentation through Language-Encoded Egocentric Perception

arXiv.org Artificial Intelligence

We depend on our own memory to encode, store, and retrieve our experiences. However, memory lapses can occur. One promising avenue for achieving memory augmentation is through the use of augmented reality head-mounted displays to capture and preserve egocentric videos, a practice commonly referred to as life logging. However, a significant challenge arises from the sheer volume of video data generated through life logging, as the current technology lacks the capability to encode and store such large amounts of data efficiently. Further, retrieving specific information from extensive video archives requires substantial computational power, further complicating the task of quickly accessing desired content. To address these challenges, we propose a memory augmentation system that involves leveraging natural language encoding for video data and storing them in a vector database. This approach harnesses the power of large vision language models to perform the language encoding process. Additionally, we propose using large language models to facilitate natural language querying. Our system underwent extensive evaluation using the QA-Ego4D dataset and achieved state-of-the-art results with a BLEU score of 8.3, outperforming conventional machine learning models that scored between 3.4 and 5.8. Additionally, in a user study, our system received a higher mean response score of 4.13/5 compared to the human participants' score of 2.46/5 on real-life episodic memory tasks.


The Statistical Model for Ticker, an Adaptive Single-Switch Text-Entry Method for Visually Impaired Users

arXiv.org Artificial Intelligence

This paper presents the statistical model for Ticker [1], a novel probabilistic stereophonic single-switch text entry method for visually-impaired users with motor disabilities who rely on single-switch scanning systems to communicate. All terminology and notation are defined in [1].


What's Hot in Intelligent User Interfaces

AAAI Conferences

The ACM Conference on Intelligent User Interfaces (IUI) is the annual meeting of the intelligent user interface community and serves as a premier international forum for reporting outstanding research and development on intelligent user interfaces. ACM IUI is where the Human-Computer Interaction (HCI) community meets the Artificial Intelligence (AI) community. Here we summarize the latest trends in IUI based on our experience organizing the 20th ACM IUI Conference in Atlanta in 2015. At ACM IUI, we address the complex interactions between Figure 1: Take a Selfie with Hairware machine intelligence and human intelligence by leveraging solutions from machine learning, knowledge representation and new interaction technologies. Although submissions focusing paradigms have emerged. For example, at IUI 2015, conductive on only Artificial Intelligence (AI) or Human Computer hair extensions were used to send messages, record Interaction (HCI) will be considered, we give strong conversations and control cameras (Vega, Cunha, and Fuks preferences to submissions that discuss research from both 2015) (Figure 1).


Intelligently Aiding Human-Guided Correction of Speech Recognition

AAAI Conferences

Correcting recognition errors is often necessary in a speech interface. These errors not only reduce users' overall entry rate, but can also lead to frustration. While making fewer recognition errors is undoubtedly helpful, facilities for supporting user-guided correction are also critical. We explore how to better support user corrections using Parakeet — a continuous speech recognition system for mobile touch-screen devices. Parakeet's interface is designed for easy error correction on a handheld device. Users correct errors by selecting alternative words from a word confusion network and by typing on a predictive software keyboard. Our interface design was guided by computational experiments and used a variety of information sources to aid the correction process. In user studies, participants were able to write text effectively despite sometimes high initial recognition error rates. Using Parakeet as an example, we discuss principles we found were important for building an effective speech correction interface.


Five Challenges for Intelligent Text Entry Methods

AI Magazine

For text entry methods to be useful they have to deliver high entry rates and low error rates. At the same time they need to be easy-to-learn and provide effective means of correcting mistakes. Intelligent text entry methods combine AI techniques with HCI theory to enable users to enter text as efficiently and effortlessly as possible. Here I sample a selection of such techniques from the research literature and set them into their historical context. I then highlight five challenges for text entry methods that aspire to make an impact in our society: localization, error correction, editor support, feedback, and context of use.