Goto

Collaborating Authors

 Krishnan, Srivatsan


ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design

arXiv.org Artificial Intelligence

Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.


Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration

arXiv.org Artificial Intelligence

Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.


Machine Learning-Based Automated Design Space Exploration for Autonomous Aerial Robots

arXiv.org Artificial Intelligence

Building domain-specific architectures for autonomous aerial robots is challenging due to a lack of systematic methodology for designing onboard compute. We introduce a novel performance model called the F-1 roofline to help architects understand how to build a balanced computing system for autonomous aerial robots considering both its cyber (sensor rate, compute performance) and physical components (body-dynamics) that affect the performance of the machine. We use F-1 to characterize commonly used learning-based autonomy algorithms with onboard platforms to demonstrate the need for cyber-physical co-design. To navigate the cyber-physical design space automatically, we subsequently introduce AutoPilot. This push-button framework automates the co-design of cyber-physical components for aerial robots from a high-level specification guided by the F-1 model. AutoPilot uses Bayesian optimization to automatically co-design the autonomy algorithm and hardware accelerator while considering various cyber-physical parameters to generate an optimal design under different task level complexities for different robots and sensor framerates. As a result, designs generated by AutoPilot, on average, lower mission time up to 2x over baseline approaches, conserving battery energy.


Quantized Reinforcement Learning (QUARL)

arXiv.org Artificial Intelligence

Recent work has shown that quantization can help reduce the memory, compute, and energy demands of deep neural networks without significantly harming their quality. However, whether these prior techniques, applied traditionally to image-based models, work with the same efficacy to the sequential decision making process in reinforcement learning remains an unanswered question. To address this void, we conduct the first comprehensive empirical study that quantifies the effects of quantization on various deep reinforcement learning policies with the intent to reduce their computational resource demands. We apply techniques such as post-training quantization and quantization aware training to a spectrum of reinforcement learning tasks (such as Pong, Breakout, BeamRider and more) and training algorithms (such as PPO, A2C, DDPG, and DQN). Across this spectrum of tasks and learning algorithms, we show that policies can be quantized to 6-8 bits of precision without loss of accuracy. We also show that certain tasks and reinforcement learning algorithms yield policies that are more difficult to quantize due to their effect of widening the models' distribution of weights and that quantization aware training consistently improves results over post-training quantization and oftentimes even over the full precision baseline. Finally, we demonstrate real-world applications of quantization for reinforcement learning. We use half-precision training to train a Pong model 50% faster, and we deploy a quantized reinforcement learning based navigation policy to an embedded system, achieving an 18$\times$ speedup and a 4$\times$ reduction in memory usage over an unquantized policy.


Learning to Seek: Autonomous Source Seeking with Deep Reinforcement Learning Onboard a Nano Drone Microcontroller

arXiv.org Artificial Intelligence

-- Fully autonomous navigation using nano drones has numerous application in the real world, ranging from search and rescue to source seeking. Nano drones are well-suited for source seeking because of their agility, low price, and ubiquitous character . Unfortunately, their constrained form factor limits flight time, sensor payload, and compute capability. These challenges are a crucial limitation for the use of source-seeking nano drones in GPSdenied and highly cluttered environments. Hereby, we introduce a fully autonomous deep reinforcement learning-based light-seeking nano drone. We present the method for efficiently training, converting, and utilizing deep reinforcement learning policies. Our training methodology and novel quantization scheme allow fitting the trained policy in 3 kB of memory. The quantization scheme uses representative input data and input scaling to arrive at a full 8-bit model. Finally, we evaluate the approach in simulation and flight tests using a Bitcraze CrazyFlie, achieving 80% success rate on average in a highly cluttered and randomized test environment. Even more, the drone finds the light source in 29% fewer steps compared to a baseline simulation (obstacle avoidance without source information). T o our knowledge, this is the first deep reinforcement learning method that enables source seeking within a highly constrained nano drone demonstrating robust flight behavior . Our general methodology is suitable for any (source seeking) highly constrained platform using deep reinforcement learning. In recent years, nano drones have gained traction in the robotics community. Their agility, maneuverability, and low price make them suitable for a wide range of applications, especially in GPSdenied and cluttered environments.