Kovacs, Balint
LesionLocator: Zero-Shot Universal Tumor Segmentation and Tracking in 3D Whole-Body Imaging
Rokuss, Maximilian, Kirchhoff, Yannick, Akbal, Seval, Kovacs, Balint, Roy, Saikat, Ulrich, Constantin, Wald, Tassilo, Rotkopf, Lukas T., Schlemmer, Heinz-Peter, Maier-Hein, Klaus
In this work, we present LesionLocator, a framework for zero-shot longitudinal lesion tracking and segmentation in 3D medical imaging, establishing the first end-to-end model capable of 4D tracking with dense spatial prompts. Our model leverages an extensive dataset of 23,262 annotated medical scans, as well as synthesized longitudinal data across diverse lesion types. The diversity and scale of our dataset significantly enhances model generalizability to real-world medical imaging challenges and addresses key limitations in longitudinal data availability. LesionLocator outperforms all existing promptable models in lesion segmentation by nearly 10 dice points, reaching human-level performance, and achieves state-of-the-art results in lesion tracking, with superior lesion retrieval and segmentation accuracy. LesionLocator not only sets a new benchmark in universal promptable lesion segmentation and automated longitudinal lesion tracking but also provides the first open-access solution of its kind, releasing our synthetic 4D dataset and model to the community, empowering future advancements in medical imaging. Code is available at: www.github.com/MIC-DKFZ/LesionLocator
Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting
Rokuss, Maximilian, Kirchhoff, Yannick, Roy, Saikat, Kovacs, Balint, Ulrich, Constantin, Wald, Tassilo, Zenk, Maximilian, Denner, Stefan, Isensee, Fabian, Vollmuth, Philipp, Kleesiek, Jens, Maier-Hein, Klaus
Accurate segmentation of Multiple Sclerosis (MS) lesions in longitudinal MRI scans is crucial for monitoring disease progression and treatment efficacy. Although changes across time are taken into account when assessing images in clinical practice, most existing deep learning methods treat scans from different timepoints separately. Among studies utilizing longitudinal images, a simple channel-wise concatenation is the primary albeit suboptimal method employed to integrate timepoints. We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block. It merges features from two timepoints, emphasizing changes between scans. We achieve superior scores in lesion segmentation (Dice Score, Hausdorff distance) as well as lesion detection (lesion-level $F_1$ score) as compared to state-of-the-art longitudinal and single timepoint models across two datasets. Our code is made publicly available at www.github.com/MIC-DKFZ/Longitudinal-Difference-Weighting.
Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
Kirchhoff, Yannick, Rokuss, Maximilian R., Roy, Saikat, Kovacs, Balint, Ulrich, Constantin, Wald, Tassilo, Zenk, Maximilian, Vollmuth, Philipp, Kleesiek, Jens, Isensee, Fabian, Maier-Hein, Klaus
Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision. Standard deep learning-based segmentation loss functions, such as Dice or Cross-Entropy, focus on volumetric overlap, often at the expense of preserving structural connectivity or topology. This can lead to segmentation errors that adversely affect downstream tasks, including flow calculation, navigation, and structural inspection. Although current topology-focused losses mark an improvement, they introduce significant computational and memory overheads. This is particularly relevant for 3D data, rendering these losses infeasible for larger volumes as well as increasingly important multi-class segmentation problems. To mitigate this, we propose a novel Skeleton Recall Loss, which effectively addresses these challenges by circumventing intensive GPU-based calculations with inexpensive CPU operations. It demonstrates overall superior performance to current state-of-the-art approaches on five public datasets for topology-preserving segmentation, while substantially reducing computational overheads by more than 90%. In doing so, we introduce the first multi-class capable loss function for thin structure segmentation, excelling in both efficiency and efficacy for topology-preservation.
Anatomy-informed Data Augmentation for Enhanced Prostate Cancer Detection
Kovacs, Balint, Netzer, Nils, Baumgartner, Michael, Eith, Carolin, Bounias, Dimitrios, Meinzer, Clara, Jaeger, Paul F., Zhang, Kevin S., Floca, Ralf, Schrader, Adrian, Isensee, Fabian, Gnirs, Regula, Goertz, Magdalena, Schuetz, Viktoria, Stenzinger, Albrecht, Hohenfellner, Markus, Schlemmer, Heinz-Peter, Wolf, Ivo, Bonekamp, David, Maier-Hein, Klaus H.
Data augmentation (DA) is a key factor in medical image analysis, such as in prostate cancer (PCa) detection on magnetic resonance images. State-of-the-art computer-aided diagnosis systems still rely on simplistic spatial transformations to preserve the pathological label post transformation. However, such augmentations do not substantially increase the organ as well as tumor shape variability in the training set, limiting the model's ability to generalize to unseen cases with more diverse localized soft-tissue deformations. We propose a new anatomy-informed transformation that leverages information from adjacent organs to simulate typical physiological deformations of the prostate and generates unique lesion shapes without altering their label. Due to its lightweight computational requirements, it can be easily integrated into common DA frameworks. We demonstrate the effectiveness of our augmentation on a dataset of 774 biopsy-confirmed examinations, by evaluating a state-of-the-art method for PCa detection with different augmentation settings.