Goto

Collaborating Authors

 Komodakis, Nikos


EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling

arXiv.org Artificial Intelligence

Latent generative models have emerged as a leading approach for high-quality image synthesis. These models rely on an autoencoder to compress images into a latent space, followed by a generative model to learn the latent distribution. We identify that existing autoencoders lack equivariance to semantic-preserving transformations like scaling and rotation, resulting in complex latent spaces that hinder generative performance. To address this, we propose EQ-VAE, a simple regularization approach that enforces equivariance in the latent space, reducing its complexity without degrading reconstruction quality. By finetuning pre-trained autoencoders with EQ-VAE, we enhance the performance of several state-of-the-art generative models, including DiT, SiT, REPA and MaskGIT, achieving a 7 speedup on DiT-XL/2 with only five epochs of SD-VAE fine-tuning. EQ-VAE is compatible with both continuous and discrete autoencoders, thus offering a versatile enhancement for a wide range of latent generative models. Project page and code: https://eq-vae.github.io/.


ToNNO: Tomographic Reconstruction of a Neural Network's Output for Weakly Supervised Segmentation of 3D Medical Images

arXiv.org Artificial Intelligence

Annotating lots of 3D medical images for training segmentation models is time-consuming. The goal of weakly supervised semantic segmentation is to train segmentation models without using any ground truth segmentation masks. Our work addresses the case where only image-level categorical labels, indicating the presence or absence of a particular region of interest (such as tumours or lesions), are available. Most existing methods rely on class activation mapping (CAM). We propose a novel approach, ToNNO, which is based on the Tomographic reconstruction of a Neural Network's Output. Our technique extracts stacks of slices with different angles from the input 3D volume, feeds these slices to a 2D encoder, and applies the inverse Radon transform in order to reconstruct a 3D heatmap of the encoder's predictions. This generic method allows to perform dense prediction tasks on 3D volumes using any 2D image encoder. We apply it to weakly supervised medical image segmentation by training the 2D encoder to output high values for slices containing the regions of interest. We test it on four large scale medical image datasets and outperform 2D CAM methods. We then extend ToNNO by combining tomographic reconstruction with CAM methods, proposing Averaged CAM and Tomographic CAM, which obtain even better results.


MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments

arXiv.org Artificial Intelligence

Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks for very large fully-annotated datasets. Different classes of self-supervised learning offer representations with either good contextual reasoning properties, e.g., using masked image modeling strategies, or invariance to image perturbations, e.g., with contrastive methods. In this work, we propose a single-stage and standalone method, MOCA, which unifies both desired properties using novel mask-and-predict objectives defined with high-level features (instead of pixel-level details). Moreover, we show how to effectively employ both learning paradigms in a synergistic and computation-efficient way. Doing so, we achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols with a training that is at least 3 times faster than prior methods.


Exploring Weight Symmetry in Deep Neural Networks

arXiv.org Machine Learning

We propose to impose symmetry in neural network parameters to improve parameter usage and make use of dedicated convolution and matrix multiplication routines. Due to significant reduction in the number of parameters as a result of the symmetry constraints, one would expect a dramatic drop in accuracy. Surprisingly, we show that this is not the case, and, depending on network size, symmetry can have little or no negative effect on network accuracy, especially in deep overparameterized networks. We propose several ways to impose local symmetry in recurrent and convolutional neural networks, and show that our symmetry parameterizations satisfy universal approximation property for single hidden layer networks. We extensively evaluate these parameterizations on CIFAR, ImageNet and language modeling datasets, showing significant benefits from the use of symmetry. For instance, our ResNet-101 with channel-wise symmetry has almost 25% less parameters and only 0.2% accuracy loss on ImageNet. Code for our experiments is available at https://github.com/hushell/deep-symmetry


Scattering Networks for Hybrid Representation Learning

arXiv.org Machine Learning

Scattering networks are a class of designed Convolutional Neural Networks (CNNs) with fixed weights. We argue they can serve as generic representations for modelling images. In particular, by working in scattering space, we achieve competitive results both for supervised and unsupervised learning tasks, while making progress towards constructing more interpretable CNNs. For supervised learning, we demonstrate that the early layers of CNNs do not necessarily need to be learned, and can be replaced with a scattering network instead. Indeed, using hybrid architectures, we achieve the best results with predefined representations to-date, while being competitive with end-to-end learned CNNs. Specifically, even applying a shallow cascade of small-windowed scattering coefficients followed by 1$\times$1-convolutions results in AlexNet accuracy on the ILSVRC2012 classification task. Moreover, by combining scattering networks with deep residual networks, we achieve a single-crop top-5 error of 11.4% on ILSVRC2012. Also, we show they can yield excellent performance in the small sample regime on CIFAR-10 and STL-10 datasets, exceeding their end-to-end counterparts, through their ability to incorporate geometrical priors. For unsupervised learning, scattering coefficients can be a competitive representation that permits image recovery. We use this fact to train hybrid GANs to generate images. Finally, we empirically analyze several properties related to stability and reconstruction of images from scattering coefficients.


Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers

Neural Information Processing Systems

We propose a general and versatile framework that significantly speeds-up graphical model optimization while maintaining an excellent solution accuracy. The proposed approach, refereed as Inference by Learning or IbyL, relies on a multi-scale pruning scheme that progressively reduces the solution space by use of a coarse-to-fine cascade of learnt classifiers. We thoroughly experiment with classic computer vision related MRF problems, where our novel framework constantly yields a significant time speed-up (with respect to the most efficient inference methods) and obtains a more accurate solution than directly optimizing the MRF. We make our code available on-line.


Clustering via LP-based Stabilities

Neural Information Processing Systems

A novel center-based clustering algorithm is proposed in this paper. We first formulate clustering as an NP-hard linear integer program and we then use linear programming and the duality theory to derive the solution of this optimization problem. This leads to an efficient and very general algorithm, which works in the dual domain, and can cluster data based on an arbitrary set of distances. Despite its generality, it is independent of initialization (unlike EM-like methods such as K-means), has guaranteed convergence, and can also provide online optimality bounds about the quality of the estimated clustering solutions. To deal with the most critical issue in a center-based clustering algorithm (selection of cluster centers), we also introduce the notion of stability of a cluster center, which is a well defined LP-based quantity that plays a key role to our algorithm's success. Furthermore, we also introduce, what we call, the margins (another key ingredient in our algorithm), which can be roughly thought of as dual counterparts to stabilities and allow us to obtain computationally efficient approximations to the latter. Promising experimental results demonstrate the potentials of our method.