Kolossa, Dorothea
A database to support the evaluation of gender biases in GPT-4o output
Mehner, Luise, Fiedler, Lena Alicija Philine, Ammon, Sabine, Kolossa, Dorothea
The widespread application of Large Language Models (LLMs) involves ethical risks for users and societies. A prominent ethical risk of LLMs is the generation of unfair language output that reinforces or exacerbates harm for members of disadvantaged social groups through gender biases (Weidinger et al., 2022; Bender et al., 2021; Kotek et al., 2023). Hence, the evaluation of the fairness of LLM outputs with respect to such biases is a topic of rising interest. To advance research in this field, promote discourse on suitable normative bases and evaluation methodologies, and enhance the reproducibility of related studies, we propose a novel approach to database construction. This approach enables the assessment of gender-related biases in LLM-generated language beyond merely evaluating their degree of neutralization.
How desirable is alignment between LLMs and linguistically diverse human users?
Knoeferle, Pia, Möller, Sebastian, Kolossa, Dorothea, Solopova, Veronika, Rehm, Georg
We discuss how desirable it is that Large Language Models (LLMs) be able to adapt or align their language behavior with users who may be diverse in their language use. User diversity may come about among others due to i) age differences; ii) gender characteristics, and/or iii) multilingual experience, and associated differences in language processing and use. We consider potential consequences for usability, communication, and LLM development.
Extending Information Bottleneck Attribution to Video Sequences
Solopova, Veronika, Schmidt, Lucas, Kolossa, Dorothea
We introduce VIBA, a novel approach for explainable video classification by adapting Information Bottlenecks for Attribution (IBA) to video sequences. While most traditional explainability methods are designed for image models, our IBA framework addresses the need for explainability in temporal models used for video analysis. To demonstrate its effectiveness, we apply VIBA to video deepfake detection, testing it on two architectures: the Xception model for spatial features and a VGG11-based model for capturing motion dynamics through optical flow. Using a custom dataset that reflects recent deepfake generation techniques, we adapt IBA to create relevance and optical flow maps, visually highlighting manipulated regions and motion inconsistencies. Our results show that VIBA generates temporally and spatially consistent explanations, which align closely with human annotations, thus providing interpretability for video classification and particularly for deepfake detection.
Single-Model Attribution for Spoofed Speech via Vocoder Fingerprints in an Open-World Setting
Pizarro, Matías, Laszkiewicz, Mike, Kolossa, Dorothea, Fischer, Asja
As speech generation technology advances, so do the potential threats of misusing spoofed speech signals. One way to address these threats is by attributing the signals to their source generative model. In this work, we are the first to tackle the single-model attribution task in an open-world setting, that is, we aim at identifying whether spoofed speech signals from unknown sources originate from a specific vocoder. We show that the standardized average residual between audio signals and their low-pass filtered or EnCodec filtered versions can serve as powerful vocoder fingerprints. The approach only requires data from the target vocoder and allows for simple but highly accurate distance-based model attribution. We demonstrate its effectiveness on LJSpeech and JSUT, achieving an average AUROC of over 99% in most settings. The accompanying robustness study shows that it is also resilient to noise levels up to a certain degree.
Leveraging characteristics of the output probability distribution for identifying adversarial audio examples
B., Matías P. Pizarro, Kolossa, Dorothea, Fischer, Asja
Adversarial attacks represent a security threat to machine learning based automatic speech recognition (ASR) systems. To prevent such attacks we propose an adversarial example detection strategy applicable to any ASR system that predicts a probability distribution over output tokens in each time step. We measure a set of characteristics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy, and the Jensen-Shannon divergence of the distributions of subsequent time steps. Then, we fit a Gaussian distribution to the characteristics observed for benign data. By computing the likelihood of incoming new audio we can distinguish malicious inputs from samples from clean data with an area under the receiving operator characteristic (AUROC) higher than 0.99, which drops to 0.98 for less-quality audio. To assess the robustness of our method we build adaptive attacks. This reduces the AUROC to 0.96 but results in more noisy adversarial clips.
VenoMave: Targeted Poisoning Against Speech Recognition
Aghakhani, Hojjat, Schönherr, Lea, Eisenhofer, Thorsten, Kolossa, Dorothea, Holz, Thorsten, Kruegel, Christopher, Vigna, Giovanni
Despite remarkable improvements, automatic speech recognition is susceptible to adversarial perturbations. Compared to standard machine learning architectures, these attacks are significantly more challenging, especially since the inputs to a speech recognition system are time series that contain both acoustic and linguistic properties of speech. Extracting all recognition-relevant information requires more complex pipelines and an ensemble of specialized components. Consequently, an attacker needs to consider the entire pipeline. In this paper, we present VENOMAVE, the first training-time poisoning attack against speech recognition. Similar to the predominantly studied evasion attacks, we pursue the same goal: leading the system to an incorrect and attacker-chosen transcription of a target audio waveform. In contrast to evasion attacks, however, we assume that the attacker can only manipulate a small part of the training data without altering the target audio waveform at runtime. We evaluate our attack on two datasets: TIDIGITS and Speech Commands. When poisoning less than 0.17% of the dataset, VENOMAVE achieves attack success rates of more than 80.0%, without access to the victim's network architecture or hyperparameters. In a more realistic scenario, when the target audio waveform is played over the air in different rooms, VENOMAVE maintains a success rate of up to 73.3%. Finally, VENOMAVE achieves an attack transferability rate of 36.4% between two different model architectures.
Robustifying automatic speech recognition by extracting slowly varying features
Pizarro, Matias, Kolossa, Dorothea, Fischer, Asja
In the past few years, it has been shown that deep learning systems are highly vulnerable under attacks with adversarial examples. Neural-network-based automatic speech recognition (ASR) systems are no exception. Targeted and untargeted attacks can modify an audio input signal in such a way that humans still recognise the same words, while ASR systems are steered to predict a different transcription. In this paper, we propose a defense mechanism against targeted adversarial attacks consisting in removing fast-changing features from the audio signals, either by applying slow feature analysis, a low-pass filter, or both, before feeding the input to the ASR system. We perform an empirical analysis of hybrid ASR models trained on data pre-processed in such a way. While the resulting models perform quite well on benign data, they are significantly more robust against targeted adversarial attacks: Our final, proposed model shows a performance on clean data similar to the baseline model, while being more than four times more robust.
Data Fusion for Audiovisual Speaker Localization: Extending Dynamic Stream Weights to the Spatial Domain
Wissing, Julio, Boenninghoff, Benedikt, Kolossa, Dorothea, Ochiai, Tsubasa, Delcroix, Marc, Kinoshita, Keisuke, Nakatani, Tomohiro, Araki, Shoko, Schymura, Christopher
Estimating the positions of multiple speakers can be helpful for tasks like automatic speech recognition or speaker diarization. Both applications benefit from a known speaker position when, for instance, applying beamforming or assigning unique speaker identities. Recently, several approaches utilizing acoustic signals augmented with visual data have been proposed for this task. However, both the acoustic and the visual modality may be corrupted in specific spatial regions, for instance due to poor lighting conditions or to the presence of background noise. This paper proposes a novel audiovisual data fusion framework for speaker localization by assigning individual dynamic stream weights to specific regions in the localization space. This fusion is achieved via a neural network, which combines the predictions of individual audio and video trackers based on their time- and location-dependent reliability. A performance evaluation using audiovisual recordings yields promising results, with the proposed fusion approach outperforming all baseline models.
Detecting Adversarial Examples for Speech Recognition via Uncertainty Quantification
Däubener, Sina, Schönherr, Lea, Fischer, Asja, Kolossa, Dorothea
Machine learning systems and also, specifically, automatic speech recognition (ASR) systems are vulnerable against adversarial attacks, where an attacker maliciously changes the input. In the case of ASR systems, the most interesting cases are targeted attacks, in which an attacker aims to force the system into recognizing given target transcriptions in an arbitrary audio sample. The increasing number of sophisticated, quasi imperceptible attacks raises the question of countermeasures. In this paper, we focus on hybrid ASR systems and compare four acoustic models regarding their ability to indicate uncertainty under attack: a feed-forward neural network and three neural networks specifically designed for uncertainty quantification, namely a Bayesian neural network, Monte Carlo dropout, and a deep ensemble. We employ uncertainty measures of the acoustic model to construct a simple one-class classification model for assessing whether inputs are benign or adversarial. Based on this approach, we are able to detect adversarial examples with an area under the receiving operator curve score of more than 0.99. The neural networks for uncertainty quantification simultaneously diminish the vulnerability to the attack, which is reflected in a lower recognition accuracy of the malicious target text in comparison to a standard hybrid ASR system.
Variational Autoencoder with Embedded Student-$t$ Mixture Model for Authorship Attribution
Boenninghoff, Benedikt, Zeiler, Steffen, Nickel, Robert M., Kolossa, Dorothea
Traditional computational authorship attribution describes a classification task in a closed-set scenario. Given a finite set of candidate authors and corresponding labeled texts, the objective is to determine which of the authors has written another set of anonymous or disputed texts. In this work, we propose a probabilistic autoencoding framework to deal with this supervised classification task. More precisely, we are extending a variational autoencoder (VAE) with embedded Gaussian mixture model to a Student-$t$ mixture model. Autoencoders have had tremendous success in learning latent representations. However, existing VAEs are currently still bound by limitations imposed by the assumed Gaussianity of the underlying probability distributions in the latent space. In this work, we are extending the Gaussian model for the VAE to a Student-$t$ model, which allows for an independent control of the "heaviness" of the respective tails of the implied probability densities. Experiments over an Amazon review dataset indicate superior performance of the proposed method.