Koishida, Kazuhito
Automatic Joint Structured Pruning and Quantization for Efficient Neural Network Training and Compression
Qu, Xiaoyi, Aponte, David, Banbury, Colby, Robinson, Daniel P., Ding, Tianyu, Koishida, Kazuhito, Zharkov, Ilya, Chen, Tianyi
Structured pruning and quantization are fundamental techniques used to reduce the size of deep neural networks (DNNs), and typically are applied independently. Applying these techniques jointly via co-optimization has the potential to produce smaller, high quality models. However, existing joint schemes are not widely used because of (1) engineering difficulties (complicated multi-stage processes), (2) black-box optimization (extensive hyperparameter tuning to control the overall compression), and (3) insufficient architecture generalization. T o address these limitations, we present the framework GETA, which automatically and efficiently performs joint structured pruning and quantization-aware training on any DNNs. GETA introduces three key innovations: (i) a quantization-aware dependency graph (QADG) that constructs a pruning search space for generic quantization-aware DNN, (ii) a partially projected stochastic gradient method that guarantees lay-erwise bit constraints are satisfied, and (iii) a new joint learning strategy that incorporates interpretable relationships between pruning and quantization. W e present numerical experiments on both convolutional neural networks and transformer architectures that show that our approach achieves competitive (often superior) performance compared to existing joint pruning and quantization methods. The source code is available at https://github.
Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Abdali, Sara, Goksen, Can, Amizadeh, Saeed, Koishida, Kazuhito
Investigating NLP through a philosophical lens has recently caught researcher's eyes as it connects computational methods with classical schools of philosophy. This paper introduces a philosophical approach inspired by the Hegelian Dialectic for LLMs' self-reflection, utilizing a self-dialectical approach to emulate internal critiques and then synthesize new ideas by resolving the contradicting points. Moreover, this paper investigates the effect of LLMs' temperature for generation by establishing a dynamic annealing approach, which promotes the creativity in the early stages and gradually refines it by focusing on the nuances, as well as a fixed temperature strategy for generation. Our proposed approach is examined to determine its ability to generate novel ideas from an initial proposition. Additionally, a Multi Agent Majority Voting (MAMV) strategy is leveraged to assess the validity and novelty of the generated ideas, which proves beneficial in the absence of domain experts. Our experiments show promise in generating new ideas and provide a stepping stone for future research.
WinClick: GUI Grounding with Multimodal Large Language Models
Hui, Zheng, Li, Yinheng, zhao, Dan, Chen, Tianyi, Banbury, Colby, Koishida, Kazuhito
Graphical User Interface (GUI) tasks are vital for automating workflows such as software testing, user interface navigation. For users, the GUI is the most intuitive platform for interacting with a computer. Previous work identified a key challenge in developing visual GUI agents: GUI grounding - the ability to accurately locate screen elements based on instructions. However, most existing GUI agents rely on structured data formats like DOM or HTML files in training or inferencing, which are inaccessible across all applications, particular in a general desktop environments such as Windows OS. To address this, we introduce WinClick, a novel visual GUI agent developed in Windows platform. WinClick leverages screenshots to detect actionable regions. To overcome the challenge of GUI grounding, we enhance WinClick with GUI grounding pre-training and propose an LLM-based method for aligning GUI grounding data. Additionally, we introduce WinSpot, the first comprehensive benchmark for GUI grounding on Windows. Our experiments demonstrate that WinClick, combined with GUI grounding pre-training, significantly outperforms existing baselines, offering a scalable solution for GUI automation in desktop environments. WinSpot is publicly available at https://github.com/zackhuiiiii/WinSpot.
VideoWebArena: Evaluating Long Context Multimodal Agents with Video Understanding Web Tasks
Jang, Lawrence, Li, Yinheng, Ding, Charles, Lin, Justin, Liang, Paul Pu, Zhao, Dan, Bonatti, Rogerio, Koishida, Kazuhito
Videos are often used to learn or extract the necessary information to complete tasks in ways different than what text and static imagery alone can provide. However, many existing agent benchmarks neglect long-context video understanding, instead focusing on text or static image inputs. To bridge this gap, we introduce VideoWebArena (VideoWA), a benchmark for evaluating the capabilities of long-context multimodal agents for video understanding. VideoWA consists of 2,021 web agent tasks based on manually crafted video tutorials, which total almost four hours of content. For our benchmark, we define a taxonomy of long-context video-based agent tasks with two main areas of focus: skill retention and factual retention. While skill retention tasks evaluate whether an agent can use a given human demonstration to complete a task efficiently, the factual retention task evaluates whether an agent can retrieve instruction-relevant information from a video to complete a task. We find that the best model achieves 13.3% success on factual retention tasks and 45.8% on factual retention QA pairs, far below human performance at 73.9% and 79.3%, respectively. On skill retention tasks, long-context models perform worse with tutorials than without, exhibiting a 5% performance decrease in WebArena tasks and a 10.3% decrease in VisualWebArena tasks. Our work highlights the need to improve the agentic abilities of long-context multimodal models and provides a testbed for future development with long-context video agents.
Data Generation using Large Language Models for Text Classification: An Empirical Case Study
Li, Yinheng, Bonatti, Rogerio, Abdali, Sara, Wagle, Justin, Koishida, Kazuhito
Using Large Language Models (LLMs) to generate synthetic data for model training has become increasingly popular in recent years. While LLMs are capable of producing realistic training data, the effectiveness of data generation is influenced by various factors, including the choice of prompt, task complexity, and the quality, quantity, and diversity of the generated data. In this work, we focus exclusively on using synthetic data for text classification tasks. Specifically, we use natural language understanding (NLU) models trained on synthetic data to assess the quality of synthetic data from different generation approaches. This work provides an empirical analysis of the impact of these factors and offers recommendations for better data generation practices.
Weakly-supervised Audio Separation via Bi-modal Semantic Similarity
Mahmud, Tanvir, Amizadeh, Saeed, Koishida, Kazuhito, Marculescu, Diana
Conditional sound separation in multi-source audio mixtures without having access to single source sound data during training is a long standing challenge. Existing mix-and-separate based methods suffer from significant performance drop with multi-source training mixtures due to the lack of supervision signal for single source separation cases during training. However, in the case of language-conditional audio separation, we do have access to corresponding text descriptions for each audio mixture in our training data, which can be seen as (rough) representations of the audio samples in the language modality. To this end, in this paper, we propose a generic bi-modal separation framework which can enhance the existing unsupervised frameworks to separate single-source signals in a target modality (i.e., audio) using the easily separable corresponding signals in the conditioning modality (i.e., language), without having access to single-source samples in the target modality during training. We empirically show that this is well within reach if we have access to a pretrained joint embedding model between the two modalities (i.e., CLAP). Furthermore, we propose to incorporate our framework into two fundamental scenarios to enhance separation performance. First, we show that our proposed methodology significantly improves the performance of purely unsupervised baselines by reducing the distribution shift between training and test samples. In particular, we show that our framework can achieve 71% boost in terms of Signal-to-Distortion Ratio (SDR) over the baseline, reaching 97.5% of the supervised learning performance. Second, we show that we can further improve the performance of the supervised learning itself by 17% if we augment it by our proposed weakly-supervised framework, that enables a powerful semi-supervised framework for audio separation.
uaMix-MAE: Efficient Tuning of Pretrained Audio Transformers with Unsupervised Audio Mixtures
Tabassum, Afrina, Tran, Dung, Dang, Trung, Lourentzou, Ismini, Koishida, Kazuhito
Masked Autoencoders (MAEs) learn rich low-level representations from unlabeled data but require substantial labeled data to effectively adapt to downstream tasks. Conversely, Instance Discrimination (ID) emphasizes high-level semantics, offering a potential solution to alleviate annotation requirements in MAEs. Although combining these two approaches can address downstream tasks with limited labeled data, naively integrating ID into MAEs leads to extended training times and high computational costs. To address this challenge, we introduce uaMix-MAE, an efficient ID tuning strategy that leverages unsupervised audio mixtures. Utilizing contrastive tuning, uaMix-MAE aligns the representations of pretrained MAEs, thereby facilitating effective adaptation to task-specific semantics. To optimize the model with small amounts of unlabeled data, we propose an audio mixing technique that manipulates audio samples in both input and virtual label spaces. Experiments in low/few-shot settings demonstrate that \modelname achieves 4-6% accuracy improvements over various benchmarks when tuned with limited unlabeled data, such as AudioSet-20K. Code is available at https://github.com/PLAN-Lab/uamix-MAE
Learned Image Compression with Text Quality Enhancement
Lai, Chih-Yu, Tran, Dung, Koishida, Kazuhito
Learned image compression has gained widespread popularity for their efficiency in achieving ultra-low bit-rates. Yet, images containing substantial textual content, particularly screen-content images (SCI), often suffers from text distortion at such compressed levels. To address this, we propose to minimize a novel text logit loss designed to quantify the disparity in text between the original and reconstructed images, thereby improving the perceptual quality of the reconstructed text. Through rigorous experimentation across diverse datasets and employing state-of-the-art algorithms, our findings reveal significant enhancements in the quality of reconstructed text upon integration of the proposed loss function with appropriate weighting. Notably, we achieve a Bjontegaard delta (BD) rate of -32.64% for Character Error Rate (CER) and -28.03% for Word Error Rate (WER) on average by applying the text logit loss for two screenshot datasets. Additionally, we present quantitative metrics tailored for evaluating text quality in image compression tasks. Our findings underscore the efficacy and potential applicability of our proposed text logit loss function across various text-aware image compression contexts.
Single-channel speech enhancement using learnable loss mixup
Chang, Oscar, Tran, Dung N., Koishida, Kazuhito
Generalization remains a major problem in supervised learning of single-channel speech enhancement. In this work, we propose learnable loss mixup (LLM), a simple and effortless training diagram, to improve the generalization of deep learning-based speech enhancement models. Loss mixup, of which learnable loss mixup is a special variant, optimizes a mixture of the loss functions of random sample pairs to train a model on virtual training data constructed from these pairs of samples. In learnable loss mixup, by conditioning on the mixed data, the loss functions are mixed using a non-linear mixing function automatically learned via neural parameterization. Our experimental results on the VCTK benchmark show that learnable loss mixup achieves 3.26 PESQ, outperforming the state-of-the-art.
Progressive Ensemble Distillation: Building Ensembles for Efficient Inference
Dennis, Don Kurian, Shetty, Abhishek, Sevekari, Anish, Koishida, Kazuhito, Smith, Virginia
We study the problem of progressive ensemble distillation: Given a large, pretrained teacher model $g$, we seek to decompose the model into smaller, low-inference cost student models $f_i$, such that progressively evaluating additional models in this ensemble leads to improved predictions. The resulting ensemble allows for flexibly tuning accuracy vs. inference cost at runtime, which is useful for a number of applications in on-device inference. The method we propose, B-DISTIL , relies on an algorithmic procedure that uses function composition over intermediate activations to construct expressive ensembles with similar performance as $g$ , but with smaller student models. We demonstrate the effectiveness of B-DISTIL by decomposing pretrained models across standard image, speech, and sensor datasets. We also provide theoretical guarantees in terms of convergence and generalization.