Koike-Akino, Toshiaki
Quantum-PEFT: Ultra parameter-efficient fine-tuning
Koike-Akino, Toshiaki, Tonin, Francesco, Wu, Yongtao, Wu, Frank Zhengqing, Candogan, Leyla Naz, Cevher, Volkan
This paper introduces Quantum-PEFT that leverages quantum computations for parameter-efficient fine-tuning (PEFT). Unlike other additive PEFT methods, such as low-rank adaptation (LoRA), Quantum-PEFT exploits an underlying full-rank yet surprisingly parameter efficient quantum unitary parameterization. With the use of Pauli parameterization, the number of trainable parameters grows only logarithmically with the ambient dimension, as opposed to linearly as in LoRA-based PEFT methods. Quantum-PEFT achieves vanishingly smaller number of trainable parameters than the lowest-rank LoRA as dimensions grow, enhancing parameter efficiency while maintaining a competitive performance. We apply Quantum-PEFT to several transfer learning benchmarks in language and vision, demonstrating significant advantages in parameter efficiency.
Winning Big with Small Models: Knowledge Distillation vs. Self-Training for Reducing Hallucination in QA Agents
Lewis, Ashley, White, Michael, Liu, Jing, Koike-Akino, Toshiaki, Parsons, Kieran, Wang, Ye
The deployment of Large Language Models (LLMs) in customer support is constrained by hallucination-generating false information-and the high cost of proprietary models. To address these challenges, we propose a retrieval-augmented question-answering (QA) pipeline and explore how to balance human input and automation. Using a dataset of questions about a Samsung Smart TV user manual, we demonstrate that synthetic data generated by LLMs outperforms crowdsourced data in reducing hallucination in finetuned models. We also compare self-training (fine-tuning models on their own outputs) and knowledge distillation (fine-tuning on stronger models' outputs, e.g., GPT-4o), and find that self-training achieves comparable hallucination reduction. We conjecture that this surprising finding can be attributed to increased exposure bias issues in the knowledge distillation case and support this conjecture with post hoc analysis. We also improve robustness to unanswerable questions and retrieval failures with contextualized "I don't know" responses. These findings show that scalable, cost-efficient QA systems can be built using synthetic data and self-training with open-source models, reducing reliance on proprietary tools or costly human annotations.
Smoothed Embeddings for Robust Language Models
Hase, Ryo, Rashid, Md Rafi Ur, Lewis, Ashley, Liu, Jing, Koike-Akino, Toshiaki, Parsons, Kieran, Wang, Ye
Improving the safety and reliability of large language models (LLMs) is a crucial aspect of realizing trustworthy AI systems. Although alignment methods aim to suppress harmful content generation, LLMs are often still vulnerable to jailbreaking attacks that employ adversarial inputs that subvert alignment and induce harmful outputs. We propose the Randomized Embedding Smoothing and Token Aggregation (RESTA) defense, which adds random noise to the embedding vectors and performs aggregation during the generation of each output token, with the aim of better preserving semantic information. Our experiments demonstrate that our approach achieves superior robustness versus utility tradeoffs compared to the baseline defenses.
Quantum Implicit Neural Compression
Fujihashi, Takuya, Koike-Akino, Toshiaki
Signal compression based on implicit neural representation (INR) is an emerging technique to represent multimedia signals with a small number of bits. While INR-based signal compression achieves high-quality reconstruction for relatively low-resolution signals, the accuracy of high-frequency details is significantly degraded with a small model. To improve the compression efficiency of INR, we introduce quantum INR (quINR), which leverages the exponentially rich expressivity of quantum neural networks for data compression. Evaluations using some benchmark datasets show that the proposed quINR-based compression could improve rate-distortion performance in image compression compared with traditional codecs and classic INR-based coding methods, up to 1.2dB gain.
Quantum Diffusion Models for Few-Shot Learning
Wang, Ruhan, Wang, Ye, Liu, Jing, Koike-Akino, Toshiaki
Modern quantum machine learning (QML) methods involve the variational optimization of parameterized quantum circuits on training datasets, followed by predictions on testing datasets. Most state-of-the-art QML algorithms currently lack practical advantages due to their limited learning capabilities, especially in few-shot learning tasks. In this work, we propose three new frameworks employing quantum diffusion model (QDM) as a solution for the few-shot learning: label-guided generation inference (LGGI); label-guided denoising inference (LGDI); and label-guided noise addition inference (LGNAI). Experimental results demonstrate that our proposed algorithms significantly outperform existing methods.
Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage
Rashid, Md Rafi Ur, Liu, Jing, Koike-Akino, Toshiaki, Mehnaz, Shagufta, Wang, Ye
Fine-tuning large language models on private data for downstream applications poses significant privacy risks in potentially exposing sensitive information. Several popular community platforms now offer convenient distribution of a large variety of pre-trained models, allowing anyone to publish without rigorous verification. This scenario creates a privacy threat, as pre-trained models can be intentionally crafted to compromise the privacy of fine-tuning datasets. In this study, we introduce a novel poisoning technique that uses model-unlearning as an attack tool. This approach manipulates a pre-trained language model to increase the leakage of private data during the fine-tuning process. Our method enhances both membership inference and data extraction attacks while preserving model utility. Experimental results across different models, datasets, and fine-tuning setups demonstrate that our attacks significantly surpass baseline performance. This work serves as a cautionary note for users who download pre-trained models from unverified sources, highlighting the potential risks involved.
Variational Randomized Smoothing for Sample-Wise Adversarial Robustness
Hase, Ryo, Wang, Ye, Koike-Akino, Toshiaki, Liu, Jing, Parsons, Kieran
Randomized smoothing is a defensive technique to achieve enhanced robustness against adversarial examples which are small input perturbations that degrade the performance of neural network models. Conventional randomized smoothing adds random noise with a fixed noise level for every input sample to smooth out adversarial perturbations. This paper proposes a new variational framework that uses a per-sample noise level suitable for each input by introducing a noise level selector. Our experimental results demonstrate enhancement of empirical robustness against adversarial attacks. We also provide and analyze the certified robustness for our sample-wise smoothing method.
GPT Sonograpy: Hand Gesture Decoding from Forearm Ultrasound Images via VLM
Bimbraw, Keshav, Wang, Ye, Liu, Jing, Koike-Akino, Toshiaki
Abstract--Large vision-language models (LVLMs), such as the Generative Pre-trained Transformer 4-omni (GPT-4o), are emerging multi-modal foundation models which have great potential as powerful artificial-intelligence (AI) assistance tools for a myriad of applications, including healthcare, industrial, and academic sectors. Although such foundation models perform well in a wide range of general tasks, their capability without finetuning is often limited in specialized tasks. However, full finetuning of large foundation models is challenging due to enormous computation/memory/dataset requirements. We show that GPT-4o can decode hand gestures from forearm ultrasound data even with no fine-tuning, and improves with few-shot, in-context learning. ARGE language models (LLMs) [1], such as generative pre-trained transformers (GPTs) [2], have recently emerged as powerful general assistance tools and exhibited tremendous capabilities in a wide range of applications. LLMs are often configured with billions of parameters to capture linguistic patterns and semantic relationships in natural language processing, enabling text generation, summarization, translation, reasoning, question-answering, etc.
Random Channel Ablation for Robust Hand Gesture Classification with Multimodal Biosignals
Bimbraw, Keshav, Liu, Jing, Wang, Ye, Koike-Akino, Toshiaki
Biosignal-based hand gesture classification is an important component of effective human-machine interaction. For multimodal biosignal sensing, the modalities often face data loss due to missing channels in the data which can adversely affect the gesture classification performance. To make the classifiers robust to missing channels in the data, this paper proposes using Random Channel Ablation (RChA) during the training process. Ultrasound and force myography (FMG) data were acquired from the forearm for 12 hand gestures over 2 subjects. The resulting multimodal data had 16 total channels, 8 for each modality. The proposed method was applied to convolutional neural network architecture, and compared with baseline, imputation, and oracle methods. Using 5-fold cross-validation for the two subjects, on average, 12.2% and 24.5% improvement was observed for gesture classification with up to 4 and 8 missing channels respectively compared to the baseline. Notably, the proposed method is also robust to an increase in the number of missing channels compared to other methods. These results show the efficacy of using random channel ablation to improve classifier robustness for multimodal and multi-channel biosignal-based hand gesture classification.
Efficient Differentially Private Fine-Tuning of Diffusion Models
Liu, Jing, Lowy, Andrew, Koike-Akino, Toshiaki, Parsons, Kieran, Wang, Ye
The recent developments of Diffusion Models (DMs) enable generation of astonishingly high-quality synthetic samples. Recent work showed that the synthetic samples generated by the diffusion model, which is pre-trained on public data and fully fine-tuned with differential privacy on private data, can train a downstream classifier, while achieving a good privacy-utility tradeoff. However, fully fine-tuning such large diffusion models with DP-SGD can be very resource-demanding in terms of memory usage and computation. In this work, we investigate Parameter-Efficient Fine-Tuning (PEFT) of diffusion models using Low-Dimensional Adaptation (LoDA) with Differential Privacy. We evaluate the proposed method with the MNIST and CIFAR-10 datasets and demonstrate that such efficient fine-tuning can also generate useful synthetic samples for training downstream classifiers, with guaranteed privacy protection of fine-tuning data. Our source code will be made available on GitHub.