Koh, Eunyee
Detecting Ambiguities to Guide Query Rewrite for Robust Conversations in Enterprise AI Assistants
Tanjim, Md Mehrab, Chen, Xiang, Bursztyn, Victor S., Bhattacharya, Uttaran, Mai, Tung, Muppala, Vaishnavi, Maharaj, Akash, Mitra, Saayan, Koh, Eunyee, Li, Yunyao, Russell, Ken
Multi-turn conversations with an Enterprise AI Assistant can be challenging due to conversational dependencies in questions, leading to ambiguities and errors. To address this, we propose an NLU-NLG framework for ambiguity detection and resolution through reformulating query automatically and introduce a new task called "Ambiguity-guided Query Rewrite." To detect ambiguities, we develop a taxonomy based on real user conversational logs and draw insights from it to design rules and extract features for a classifier which yields superior performance in detecting ambiguous queries, outperforming LLM-based baselines. Furthermore, coupling the query rewrite module with our ambiguity detecting classifier shows that this end-to-end framework can effectively mitigate ambiguities without risking unnecessary insertions of unwanted phrases for clear queries, leading to an improvement in the overall performance of the AI Assistant. Due to its significance, this has been deployed in the real world application, namely Adobe Experience Platform AI Assistant.
Summaries as Captions: Generating Figure Captions for Scientific Documents with Automated Text Summarization
Huang, Chieh-Yang, Hsu, Ting-Yao, Rossi, Ryan, Nenkova, Ani, Kim, Sungchul, Chan, Gromit Yeuk-Yin, Koh, Eunyee, Giles, Clyde Lee, Huang, Ting-Hao 'Kenneth'
Good figure captions help paper readers understand complex scientific figures. Unfortunately, even published papers often have poorly written captions. Automatic caption generation could aid paper writers by providing good starting captions that can be refined for better quality. Prior work often treated figure caption generation as a vision-to-language task. In this paper, we show that it can be more effectively tackled as a text summarization task in scientific documents. We fine-tuned PEGASUS, a pre-trained abstractive summarization model, to specifically summarize figure-referencing paragraphs (e.g., "Figure 3 shows...") into figure captions. Experiments on large-scale arXiv figures show that our method outperforms prior vision methods in both automatic and human evaluations. We further conducted an in-depth investigation focused on two key challenges: (i) the common presence of low-quality author-written captions and (ii) the lack of clear standards for good captions. Our code and data are available at: https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task.
CGC: Contrastive Graph Clustering for Community Detection and Tracking
Park, Namyong, Rossi, Ryan, Koh, Eunyee, Burhanuddin, Iftikhar Ahamath, Kim, Sungchul, Du, Fan, Ahmed, Nesreen, Faloutsos, Christos
Given entities and their interactions in the web data, which may have occurred at different time, how can we find communities of entities and track their evolution? In this paper, we approach this important task from graph clustering perspective. Recently, state-of-the-art clustering performance in various domains has been achieved by deep clustering methods. Especially, deep graph clustering (DGC) methods have successfully extended deep clustering to graph-structured data by learning node representations and cluster assignments in a joint optimization framework. Despite some differences in modeling choices (e.g., encoder architectures), existing DGC methods are mainly based on autoencoders and use the same clustering objective with relatively minor adaptations. Also, while many real-world graphs are dynamic, previous DGC methods considered only static graphs. In this work, we develop CGC, a novel end-to-end framework for graph clustering, which fundamentally differs from existing methods. CGC learns node embeddings and cluster assignments in a contrastive graph learning framework, where positive and negative samples are carefully selected in a multi-level scheme such that they reflect hierarchical community structures and network homophily. Also, we extend CGC for time-evolving data, where temporal graph clustering is performed in an incremental learning fashion, with the ability to detect change points. Extensive evaluation on real-world graphs demonstrates that the proposed CGC consistently outperforms existing methods.
A Hypergraph Neural Network Framework for Learning Hyperedge-Dependent Node Embeddings
Aponte, Ryan, Rossi, Ryan A., Guo, Shunan, Hoffswell, Jane, Lipka, Nedim, Xiao, Chang, Chan, Gromit, Koh, Eunyee, Ahmed, Nesreen
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
PersonaSAGE: A Multi-Persona Graph Neural Network
Choudhary, Gautam, Burhanuddin, Iftikhar Ahamath, Koh, Eunyee, Du, Fan, Rossi, Ryan A.
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
Graph Learning with Localized Neighborhood Fairness
Chen, April, Rossi, Ryan, Lipka, Nedim, Hoffswell, Jane, Chan, Gromit, Guo, Shunan, Koh, Eunyee, Kim, Sungchul, Ahmed, Nesreen K.
Learning fair graph representations for downstream applications is becoming increasingly important, but existing work has mostly focused on improving fairness at the global level by either modifying the graph structure or objective function without taking into account the local neighborhood of a node. In this work, we formally introduce the notion of neighborhood fairness and develop a computational framework for learning such locally fair embeddings. We argue that the notion of neighborhood fairness is more appropriate since GNN-based models operate at the local neighborhood level of a node. Our neighborhood fairness framework has two main components that are flexible for learning fair graph representations from arbitrary data: the first aims to construct fair neighborhoods for any arbitrary node in a graph and the second enables adaption of these fair neighborhoods to better capture certain application or data-dependent constraints, such as allowing neighborhoods to be more biased towards certain attributes or neighbors in the graph.Furthermore, while link prediction has been extensively studied, we are the first to investigate the graph representation learning task of fair link classification. We demonstrate the effectiveness of the proposed neighborhood fairness framework for a variety of graph machine learning tasks including fair link prediction, link classification, and learning fair graph embeddings. Notably, our approach achieves not only better fairness but also increases the accuracy in the majority of cases across a wide variety of graphs, problem settings, and metrics.
Online MAP Inference and Learning for Nonsymmetric Determinantal Point Processes
Reddy, Aravind, Rossi, Ryan A., Song, Zhao, Rao, Anup, Mai, Tung, Lipka, Nedim, Wu, Gang, Koh, Eunyee, Ahmed, Nesreen
In this paper, we introduce the online and streaming MAP inference and learning problems for Non-symmetric Determinantal Point Processes (NDPPs) where data points arrive in an arbitrary order and the algorithms are constrained to use a single-pass over the data as well as sub-linear memory. The online setting has an additional requirement of maintaining a valid solution at any point in time. For solving these new problems, we propose algorithms with theoretical guarantees, evaluate them on several real-world datasets, and show that they give comparable performance to state-of-the-art offline algorithms that store the entire data in memory and take multiple passes over it.
"It doesn't look good for a date": Transforming Critiques into Preferences for Conversational Recommendation Systems
Bursztyn, Victor S., Healey, Jennifer, Lipka, Nedim, Koh, Eunyee, Downey, Doug, Birnbaum, Larry
Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., "It doesn't look good for a date"), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., "I prefer more romantic") in order to retrieve reviews pertaining to potentially better recommendations (e.g., "Perfect for a romantic dinner"). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.
Insight-centric Visualization Recommendation
Harris, Camille, Rossi, Ryan A., Malik, Sana, Hoffswell, Jane, Du, Fan, Lee, Tak Yeon, Koh, Eunyee, Zhao, Handong
Visualization recommendation systems simplify exploratory data analysis (EDA) and make understanding data more accessible to users of all skill levels by automatically generating visualizations for users to explore. However, most existing visualization recommendation systems focus on ranking all visualizations into a single list or set of groups based on particular attributes or encodings. This global ranking makes it difficult and time-consuming for users to find the most interesting or relevant insights. To address these limitations, we introduce a novel class of visualization recommendation systems that automatically rank and recommend both groups of related insights as well as the most important insights within each group. Our proposed approach combines results from many different learning-based methods to discover insights automatically. A key advantage is that this approach generalizes to a wide variety of attribute types such as categorical, numerical, and temporal, as well as complex non-trivial combinations of these different attribute types. To evaluate the effectiveness of our approach, we implemented a new insight-centric visualization recommendation system, SpotLight, which generates and ranks annotated visualizations to explain each insight. We conducted a user study with 12 participants and two datasets which showed that users are able to quickly understand and find relevant insights in unfamiliar data.
Higher-Order Ranking and Link Prediction: From Closing Triangles to Closing Higher-Order Motifs
Rossi, Ryan A., Rao, Anup, Kim, Sungchul, Koh, Eunyee, Ahmed, Nesreen K., Wu, Gang
In this paper, we introduce the notion of motif closure and describe higher-order ranking and link prediction methods based on the notion of closing higher-order network motifs. The methods are fast and efficient for real-time ranking and link prediction-based applications such as web search, online advertising, and recommendation. In such applications, real-time performance is critical. The proposed methods do not require any explicit training data, nor do they derive an embedding from the graph data, or perform any explicit learning. Existing methods with the above desired properties are all based on closing triangles (common neighbors, Jaccard similarity, and the ilk). In this work, we investigate higher-order network motifs and develop techniques based on the notion of closing higher-order motifs that move beyond closing simple triangles. All methods described in this work are fast with a runtime that is sublinear in the number of nodes. The experimental results indicate the importance of closing higher-order motifs for ranking and link prediction applications. Finally, the proposed notion of higher-order motif closure can serve as a basis for studying and developing better ranking and link prediction methods.