Goto

Collaborating Authors

 Koeppl, Heinz


A Modular Aerial System Based on Homogeneous Quadrotors with Fault-Tolerant Control

arXiv.org Artificial Intelligence

The standard quadrotor is one of the most popular and widely used aerial vehicle of recent decades, offering great maneuverability with mechanical simplicity. However, the under-actuation characteristic limits its applications, especially when it comes to generating desired wrench with six degrees of freedom (DOF). Therefore, existing work often compromises between mechanical complexity and the controllable DOF of the aerial system. To take advantage of the mechanical simplicity of a standard quadrotor, we propose a modular aerial system, IdentiQuad, that combines only homogeneous quadrotor-based modules. Each IdentiQuad can be operated alone like a standard quadrotor, but at the same time allows task-specific assembly, increasing the controllable DOF of the system. Each module is interchangeable within its assembly. We also propose a general controller for different configurations of assemblies, capable of tolerating rotor failures and balancing the energy consumption of each module. The functionality and robustness of the system and its controller are validated using physics-based simulations for different assembly configurations.


Approximate Control for Continuous-Time POMDPs

arXiv.org Artificial Intelligence

This stochastic filtering approach is especially appealing for the control of such partially observed dynamical systems. This includes among others, e.g., control problems This work proposes a decision-making framework with noisy sensor measurements, such as grasping for partially observable systems in continuous and navigation in robotics (Kurniawati et al., 2008) or time with discrete state and action cognitive medium access control (Zhao et al., 2005) for spaces. As optimal decision-making becomes communication systems. For finding decision strategies, intractable for large state spaces we employ which use the available observational data to control approximation methods for the filtering and the system at hand, a solid framework can be found the control problem that scale well with an increasing in the area of optimal control (Stengel, 1994).


Learning Mean Field Games on Sparse Graphs: A Hybrid Graphex Approach

arXiv.org Artificial Intelligence

Learning the behavior of large agent populations is an important task for numerous research areas. Although the field of multi-agent reinforcement learning (MARL) has made significant progress towards solving these systems, solutions for many agents often remain computationally infeasible and lack theoretical guarantees. Mean Field Games (MFGs) address both of these issues and can be extended to Graphon MFGs (GMFGs) to include network structures between agents. Despite their merits, the real world applicability of GMFGs is limited by the fact that graphons only capture dense graphs. Since most empirically observed networks show some degree of sparsity, such as power law graphs, the GMFG framework is insufficient for capturing these network topologies. Thus, we introduce the novel concept of Graphex MFGs (GXMFGs) which builds on the graph theoretical concept of graphexes. Graphexes are the limiting objects to sparse graph sequences that also have other desirable features such as the small world property. Learning equilibria in these games is challenging due to the rich and sparse structure of the underlying graphs. To tackle these challenges, we design a new learning algorithm tailored to the GXMFG setup. This hybrid graphex learning approach leverages that the system mainly consists of a highly connected core and a sparse periphery. After defining the system and providing a theoretical analysis, we state our learning approach and demonstrate its learning capabilities on both synthetic graphs and real-world networks. This comparison shows that our GXMFG learning algorithm successfully extends MFGs to a highly relevant class of hard, realistic learning problems that are not accurately addressed by current MARL and MFG methods.


Collaborative Optimization of the Age of Information under Partial Observability

arXiv.org Artificial Intelligence

The significance of the freshness of sensor and control data at the receiver side, often referred to as Age of Information (AoI), is fundamentally constrained by contention for limited network resources. Evidently, network congestion is detrimental for AoI, where this congestion is partly self-induced by the sensor transmission process in addition to the contention from other transmitting sensors. In this work, we devise a decentralized AoI-minimizing transmission policy for a number of sensor agents sharing capacity-limited, non-FIFO duplex channels that introduce random delays in communication with a common receiver. By implementing the same policy, however with no explicit inter-agent communication, the agents minimize the expected AoI in this partially observable system. We cater to the partial observability due to random channel delays by designing a bootstrap particle filter that independently maintains a belief over the AoI of each agent. We also leverage mean-field control approximations and reinforcement learning to derive scalable and optimal solutions for minimizing the expected AoI collaboratively.


Sparse Mean Field Load Balancing in Large Localized Queueing Systems

arXiv.org Artificial Intelligence

Scalable load balancing algorithms are of great interest in cloud networks and data centers, necessitating the use of tractable techniques to compute optimal load balancing policies for good performance. However, most existing scalable techniques, especially asymptotically scaling methods based on mean field theory, have not been able to model large queueing networks with strong locality. Meanwhile, general multi-agent reinforcement learning techniques can be hard to scale and usually lack a theoretical foundation. In this work, we address this challenge by leveraging recent advances in sparse mean field theory to learn a near-optimal load balancing policy in sparsely connected queueing networks in a tractable manner, which may be preferable to global approaches in terms of communication overhead. Importantly, we obtain a general load balancing framework for a large class of sparse bounded-degree topologies. By formulating a novel mean field control problem in the context of graphs with bounded degree, we reduce the otherwise difficult multi-agent problem to a single-agent problem. Theoretically, the approach is justified by approximation guarantees. Empirically, the proposed methodology performs well on several realistic and scalable network topologies. Moreover, we compare it with a number of well-known load balancing heuristics and with existing scalable multi-agent reinforcement learning methods. Overall, we obtain a tractable approach for load balancing in highly localized networks. The aforementioned decentralized queueing systems with underlying graph structure can be modelled as various variants of multi-agent (partially-observable) Markov decision processes (MDP) [1, 2].


Learning Discrete-Time Major-Minor Mean Field Games

arXiv.org Artificial Intelligence

Recent techniques based on Mean Field Games (MFGs) allow the scalable analysis of multi-player games with many similar, rational agents. However, standard MFGs remain limited to homogeneous players that weakly influence each other, and cannot model major players that strongly influence other players, severely limiting the class of problems that can be handled. We propose a novel discrete time version of major-minor MFGs (M3FGs), along with a learning algorithm based on fictitious play and partitioning the probability simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random exogeneous environment states but also major players. A key challenge is that the mean field is stochastic and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting from a finite game of interest, and secondly convergence and approximation guarantees of the fictitious play algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the theoretical assumptions made, and show successful equilibrium learning in three example problems. Overall, we establish a learning framework for a novel and broad class of tractable games.


Learning to Cooperate and Communicate Over Imperfect Channels

arXiv.org Artificial Intelligence

Information exchange in multi-agent systems improves the cooperation among agents, especially in partially observable settings. In the real world, communication is often carried out over imperfect channels. This requires agents to handle uncertainty due to potential information loss. In this paper, we consider a cooperative multi-agent system where the agents act and exchange information in a decentralized manner using a limited and unreliable channel. To cope with such channel constraints, we propose a novel communication approach based on independent Q-learning. Our method allows agents to dynamically adapt how much information to share by sending messages of different sizes, depending on their local observations and the channel's properties. In addition to this message size selection, agents learn to encode and decode messages to improve their jointly trained policies. We show that our approach outperforms approaches without adaptive capabilities in a novel cooperative digit-prediction environment and discuss its limitations in the traffic junction environment.


Probabilistic inverse optimal control for non-linear partially observable systems disentangles perceptual uncertainty and behavioral costs

arXiv.org Machine Learning

Inverse optimal control can be used to characterize behavior in sequential decision-making tasks. Most existing work, however, is limited to fully observable or linear systems, or requires the action signals to be known. Here, we introduce a probabilistic approach to inverse optimal control for partially observable stochastic non-linear systems with unobserved action signals, which unifies previous approaches to inverse optimal control with maximum causal entropy formulations. Using an explicit model of the noise characteristics of the sensory and motor systems of the agent in conjunction with local linearization techniques, we derive an approximate likelihood function for the model parameters, which can be computed within a single forward pass. We present quantitative evaluations on stochastic and partially observable versions of two classic control tasks and two human behavioral tasks. Importantly, we show that our method can disentangle perceptual factors and behavioral costs despite the fact that epistemic and pragmatic actions are intertwined in sequential decision-making under uncertainty, such as in active sensing and active learning. The proposed method has broad applicability, ranging from imitation learning to sensorimotor neuroscience.


Optimal Collaborative Transportation for Under-Capacitated Vehicle Routing Problems using Aerial Drone Swarms

arXiv.org Artificial Intelligence

Swarms of aerial drones have recently been considered for last-mile deliveries in urban logistics or automated construction. At the same time, collaborative transportation of payloads by multiple drones is another important area of recent research. However, efficient coordination algorithms for collaborative transportation of many payloads by many drones remain to be considered. In this work, we formulate the collaborative transportation of payloads by a swarm of drones as a novel, under-capacitated generalization of vehicle routing problems (VRP), which may also be of separate interest. In contrast to standard VRP and capacitated VRP, we must additionally consider waiting times for payloads lifted cooperatively by multiple drones, and the corresponding coordination. Algorithmically, we provide a solution encoding that avoids deadlocks and formulate an appropriate alternating minimization scheme to solve the problem. On the hardware side, we integrate our algorithms with collision avoidance and drone controllers. The approach and the impact of the system integration are successfully verified empirically, both on a swarm of real nano-quadcopters and for large swarms in simulation. Overall, we provide a framework for collaborative transportation with aerial drone swarms, that uses only as many drones as necessary for the transportation of any single payload.


Entropic Matching for Expectation Propagation of Markov Jump Processes

arXiv.org Machine Learning

This paper addresses the problem of statistical inference for latent continuous-time stochastic processes, which is often intractable, particularly for discrete state space processes described by Markov jump processes. To overcome this issue, we propose a new tractable inference scheme based on an entropic matching framework that can be embedded into the well-known expectation propagation algorithm. We demonstrate the effectiveness of our method by providing closed-form results for a simple family of approximate distributions and apply it to the general class of chemical reaction networks, which are a crucial tool for modeling in systems biology. Moreover, we derive closed form expressions for point estimation of the underlying parameters using an approximate expectation maximization procedure. We evaluate the performance of our method on various chemical reaction network instantiations, including a stochastic Lotka-Voltera example, and discuss its limitations and potential for future improvements. Our proposed approach provides a promising direction for addressing complex continuous-time Bayesian inference problems.