Knoedler, Luzia
RPCBF: Constructing Safety Filters Robust to Model Error and Disturbances via Policy Control Barrier Functions
Knoedler, Luzia, So, Oswin, Yin, Ji, Black, Mitchell, Serlin, Zachary, Tsiotras, Panagiotis, Alonso-Mora, Javier, Fan, Chuchu
Control Barrier Functions (CBFs) have proven to be an effective tool for performing safe control synthesis for nonlinear systems. However, guaranteeing safety in the presence of disturbances and input constraints for high relative degree systems is a difficult problem. In this work, we propose the Robust Policy CBF (RPCBF), a practical method of constructing CBF approximations that is easy to implement and robust to disturbances via the estimation of a value function. We demonstrate the effectiveness of our method in simulation on a variety of high relative degree input-constrained systems. Finally, we demonstrate the benefits of RPCBF in compensating for model errors on a hardware quadcopter platform by treating the model errors as disturbances. The project page can be found at https://oswinso.xyz/rpcbf.
Hey Robot! Personalizing Robot Navigation through Model Predictive Control with a Large Language Model
Martinez-Baselga, Diego, de Groot, Oscar, Knoedler, Luzia, Alonso-Mora, Javier, Riazuelo, Luis, Montano, Luis
Robot navigation methods allow mobile robots to operate in applications such as warehouses or hospitals. While the environment in which the robot operates imposes requirements on its navigation behavior, most existing methods do not allow the end-user to configure the robot's behavior and priorities, possibly leading to undesirable behavior (e.g., fast driving in a hospital). We propose a novel approach to adapt robot motion behavior based on natural language instructions provided by the end-user. Our zero-shot method uses an existing Visual Language Model to interpret a user text query or an image of the environment. This information is used to generate the cost function and reconfigure the parameters of a Model Predictive Controller, translating the user's instruction to the robot's motion behavior. This allows our method to safely and effectively navigate in dynamic and challenging environments. We extensively evaluate our method's individual components and demonstrate the effectiveness of our method on a ground robot in simulation and real-world experiments, and across a variety of environments and user specifications.
SHINE: Social Homology Identification for Navigation in Crowded Environments
Martinez-Baselga, Diego, de Groot, Oscar, Knoedler, Luzia, Riazuelo, Luis, Alonso-Mora, Javier, Montano, Luis
Navigating mobile robots in social environments remains a challenging task due to the intricacies of human-robot interactions. Most of the motion planners designed for crowded and dynamic environments focus on choosing the best velocity to reach the goal while avoiding collisions, but do not explicitly consider the high-level navigation behavior (avoiding through the left or right side, letting others pass or passing before others, etc.). In this work, we present a novel motion planner that incorporates topology distinct paths representing diverse navigation strategies around humans. The planner selects the topology class that imitates human behavior the best using a deep neural network model trained on real-world human motion data, ensuring socially intelligent and contextually aware navigation. Our system refines the chosen path through an optimization-based local planner in real time, ensuring seamless adherence to desired social behaviors. In this way, we decouple perception and local planning from the decision-making process. We evaluate the prediction accuracy of the network with real-world data. In addition, we assess the navigation capabilities in both simulation and a real-world platform, comparing it with other state-of-the-art planners. We demonstrate that our planner exhibits socially desirable behaviors and shows a smooth and remarkable performance.
Current-Based Impedance Control for Interacting with Mobile Manipulators
de Wolde, Jelmer, Knoedler, Luzia, Garofalo, Gianluca, Alonso-Mora, Javier
As robots shift from industrial to human-centered spaces, adopting mobile manipulators, which expand workspace capabilities, becomes crucial. In these settings, seamless interaction with humans necessitates compliant control. Two common methods for safe interaction, admittance, and impedance control, require force or torque sensors, often absent in lower-cost or lightweight robots. This paper presents an adaption of impedance control that can be used on current-controlled robots without the use of force or torque sensors and its application for compliant control of a mobile manipulator. A calibration method is designed that enables estimation of the actuators' current/torque ratios and frictions, used by the adapted impedance controller, and that can handle model errors. The calibration method and the performance of the designed controller are experimentally validated using the Kinova GEN3 Lite arm. Results show that the calibration method is consistent and that the designed controller for the arm is compliant while also being able to track targets with five-millimeter precision when no interaction is present. Additionally, this paper presents two operational modes for interacting with the mobile manipulator: one for guiding the robot around the workspace through interacting with the arm and another for executing a tracking task, both maintaining compliance to external forces. These operational modes were tested in real-world experiments, affirming their practical applicability and effectiveness.
Multi-Robot Local Motion Planning Using Dynamic Optimization Fabrics
Bakker, Saray, Knoedler, Luzia, Spahn, Max, Böhmer, Wendelin, Alonso-Mora, Javier
Abstract-- In this paper, we address the problem of real-time motion planning for multiple robotic manipulators that operate in close proximity. We build upon the concept of dynamic fabrics and extend them to multi-robot systems, referred to as Multi-Robot Dynamic Fabrics (MRDF). This geometric method enables a very high planning frequency for high-dimensional systems at the expense of being reactive and prone to deadlocks. To detect and resolve deadlocks, we propose Rollout Fabrics where MRDF are forward simulated in a decentralized manner. Franka Emika Pandas pick cubes avoiding collisions.