Klakow, Dietrich
Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased?
Gautam, Vagrant, Bingert, Eileen, Zhu, Dawei, Lauscher, Anne, Klakow, Dietrich
Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF, a carefully-designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her, singular they and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one additional sentence with a distractor pronoun causes accuracy to drop on average by 34%. Our results show that pronoun fidelity is neither robust, nor due to reasoning, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.
Fine-Tuning Large Language Models to Translate: Will a Touch of Noisy Data in Misaligned Languages Suffice?
Zhu, Dawei, Chen, Pinzhen, Zhang, Miaoran, Haddow, Barry, Shen, Xiaoyu, Klakow, Dietrich
Traditionally, success in multilingual machine translation can be attributed to three key factors in training data: large volume, diverse translation directions, and high quality. In the current practice of fine-tuning large language models (LLMs) for translation, we revisit the importance of all these factors. We find that LLMs display strong translation capability after being fine-tuned on as few as 32 training instances, and that fine-tuning on a single translation direction effectively enables LLMs to translate in multiple directions. However, the choice of direction is critical: fine-tuning LLMs with English on the target side can lead to task misinterpretation, which hinders translations into non-English languages. A similar problem arises when noise is introduced into the target side of parallel data, especially when the target language is well-represented in the LLM's pre-training. In contrast, noise in an under-represented language has a less pronounced effect. Our findings suggest that attaining successful alignment hinges on teaching the model to maintain a "superficial" focus, thereby avoiding the learning of erroneous biases beyond translation.
A Preference-driven Paradigm for Enhanced Translation with Large Language Models
Zhu, Dawei, Trenous, Sony, Shen, Xiaoyu, Klakow, Dietrich, Byrne, Bill, Hasler, Eva
Recent research has shown that large language models (LLMs) can achieve remarkable translation performance through supervised fine-tuning (SFT) using only a small amount of parallel data. However, SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references. Hence, the assistance from SFT often reaches a plateau once the LLMs have achieved a certain level of translation capability, and further increasing the size of parallel data does not provide additional benefits. To overcome this plateau associated with imitation-based SFT, we propose a preference-based approach built upon the Plackett-Luce model. The objective is to steer LLMs towards a more nuanced understanding of translation preferences from a holistic view, while also being more resilient in the absence of gold translations. We further build a dataset named MAPLE to verify the effectiveness of our approach, which includes multiple translations of varying quality for each source sentence. Extensive experiments demonstrate the superiority of our approach in "breaking the plateau" across diverse LLMs and test settings. Our in-depth analysis underscores the pivotal role of diverse translations and accurate preference scores in the success of our approach.
What explains the success of cross-modal fine-tuning with ORCA?
Garcรญa-de-Herreros, Paloma, Gautam, Vagrant, Slusallek, Philipp, Klakow, Dietrich, Mosbach, Marius
ORCA (Shen et al., 2023) is a recent technique for cross-modal fine-tuning, i.e., applying pre-trained transformer models to modalities beyond their training data. The technique consists primarily of training an embedder and fine-tuning the embedder and model. Despite its high performance on a variety of downstream tasks, we do not understand precisely how each of these components contribute to ORCA's success. Therefore, we run a series of ablations and find that embedder training does not help 2D tasks at all, contrary to what the original paper posits. In 1D tasks, some amount of embedder training is necessary but more is not better. In 4 out of 6 datasets we experiment with, it is model fine-tuning that makes the biggest difference. Through our ablations and baselines, we contribute a better understanding of the individual components of ORCA.
Self-supervised Adaptive Pre-training of Multilingual Speech Models for Language and Dialect Identification
Shaik, Mohammed Maqsood, Klakow, Dietrich, Abdullah, Badr M.
Pre-trained Transformer-based speech models have shown striking performance when fine-tuned on various downstream tasks such as automatic speech recognition and spoken language identification (SLID). However, the problem of domain mismatch remains a challenge in this area, where the domain of the pre-training data might differ from that of the downstream labeled data used for fine-tuning. In multilingual tasks such as SLID, the pre-trained speech model may not support all the languages in the downstream task. To address this challenge, we propose self-supervised adaptive pre-training (SAPT) to adapt the pre-trained model to the target domain and languages of the downstream task. We apply SAPT to the XLSR-128 model and investigate the effectiveness of this approach for the SLID task. First, we demonstrate that SAPT improves XLSR performance on the FLEURS benchmark with substantial gains up to 40.1% for under-represented languages. Second, we apply SAPT on four different datasets in a few-shot learning setting, showing that our approach improves the sample efficiency of XLSR during fine-tuning. Our experiments provide strong empirical evidence that continual adaptation via self-supervision improves downstream performance for multilingual speech models.
Understanding and Mitigating Classification Errors Through Interpretable Token Patterns
Hedderich, Michael A., Fischer, Jonas, Klakow, Dietrich, Vreeken, Jilles
State-of-the-art NLP methods achieve human-like performance on many tasks, but make errors nevertheless. Characterizing these errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors, but also gives a way to act and improve the classifier. We propose to discover those patterns of tokens that distinguish correct and erroneous predictions as to obtain global and interpretable descriptions for arbitrary NLP classifiers. We formulate the problem of finding a succinct and non-redundant set of such patterns in terms of the Minimum Description Length principle. Through an extensive set of experiments, we show that our method, Premise, performs well in practice. Unlike existing solutions, it recovers ground truth, even on highly imbalanced data over large vocabularies. In VQA and NER case studies, we confirm that it gives clear and actionable insight into the systematic errors made by NLP classifiers.
Large GPT-like Models are Bad Babies: A Closer Look at the Relationship between Linguistic Competence and Psycholinguistic Measures
Steuer, Julius, Mosbach, Marius, Klakow, Dietrich
Research on the cognitive plausibility of language models (LMs) has so far mostly concentrated on modelling psycholinguistic response variables such as reading times, gaze durations and N400/P600 EEG signals, while mostly leaving out the dimension of what Mahowald et al. (2023) described as formal and functional linguistic competence, and developmental plausibility. We address this gap by training a series of GPT-like language models of different sizes on the strict version of the BabyLM pretraining corpus, evaluating on the challenge tasks (BLiMP, GLUE, MSGS) and an additional reading time prediction task. We find a positive correlation between LM size and performance on all three challenge tasks, with different preferences for model width and depth in each of the tasks. In contrast, a negative correlation was found between LM size and reading time fit of linear mixed-effects models using LM surprisal as a predictor, with the second-smallest LM achieving the largest log-likelihood reduction over a baseline model without surprisal. This suggests that modelling processing effort and linguistic competence may require an approach different from training GPT-like LMs on a developmentally plausible corpus.
A Lightweight Method to Generate Unanswerable Questions in English
Gautam, Vagrant, Zhang, Miaoran, Klakow, Dietrich
If a question cannot be answered with the available information, robust systems for question answering (QA) should know _not_ to answer. One way to build QA models that do this is with additional training data comprised of unanswerable questions, created either by employing annotators or through automated methods for unanswerable question generation. To show that the model complexity of existing automated approaches is not justified, we examine a simpler data augmentation method for unanswerable question generation in English: performing antonym and entity swaps on answerable questions. Compared to the prior state-of-the-art, data generated with our training-free and lightweight strategy results in better models (+1.6 F1 points on SQuAD 2.0 data with BERT-large), and has higher human-judged relatedness and readability. We quantify the raw benefits of our approach compared to no augmentation across multiple encoder models, using different amounts of generated data, and also on TydiQA-MinSpan data (+9.3 F1 points with BERT-large). Our results establish swaps as a simple but strong baseline for future work.
Weaker Than You Think: A Critical Look at Weakly Supervised Learning
Zhu, Dawei, Shen, Xiaoyu, Mosbach, Marius, Stephan, Andreas, Klakow, Dietrich
Weakly supervised learning is a popular approach for training machine learning models in low-resource settings. Instead of requesting high-quality yet costly human annotations, it allows training models with noisy annotations obtained from various weak sources. Recently, many sophisticated approaches have been proposed for robust training under label noise, reporting impressive results. In this paper, we revisit the setup of these approaches and find that the benefits brought by these approaches are significantly overestimated. Specifically, we find that the success of existing weakly supervised learning approaches heavily relies on the availability of clean validation samples which, as we show, can be leveraged much more efficiently by simply training on them. After using these clean labels in training, the advantages of using these sophisticated approaches are mostly wiped out. This remains true even when reducing the size of the available clean data to just five samples per class, making these approaches impractical. To understand the true value of weakly supervised learning, we thoroughly analyze diverse NLP datasets and tasks to ascertain when and why weakly supervised approaches work. Based on our findings, we provide recommendations for future research.
Information-Theoretic Characterization of Vowel Harmony: A Cross-Linguistic Study on Word Lists
Steuer, Julius, Abdullah, Badr, List, Johann-Mattis, Klakow, Dietrich
We present a cross-linguistic study that aims to quantify vowel harmony using data-driven computational modeling. Concretely, we define an information-theoretic measure of harmonicity based on the predictability of vowels in a natural language lexicon, which we estimate using phoneme-level language models (PLMs). Prior quantitative studies have relied heavily on inflected word-forms in the analysis of vowel harmony. We instead train our models using cross-linguistically comparable lemma forms with little or no inflection, which enables us to cover more under-studied languages. Training data for our PLMs consists of word lists with a maximum of 1000 entries per language. Despite the fact that the data we employ are substantially smaller than previously used corpora, our experiments demonstrate the neural PLMs capture vowel harmony patterns in a set of languages that exhibit this phenomenon. Our work also demonstrates that word lists are a valuable resource for typological research, and offers new possibilities for future studies on low-resource, under-studied languages.