King, Michael
Scaling 4D Representations
Carreira, João, Gokay, Dilara, King, Michael, Zhang, Chuhan, Rocco, Ignacio, Mahendran, Aravindh, Keck, Thomas Albert, Heyward, Joseph, Koppula, Skanda, Pot, Etienne, Erdogan, Goker, Hasson, Yana, Yang, Yi, Greff, Klaus, Moing, Guillaume Le, van Steenkiste, Sjoerd, Zoran, Daniel, Hudson, Drew A., Vélez, Pedro, Polanía, Luisa, Friedman, Luke, Duvarney, Chris, Goroshin, Ross, Allen, Kelsey, Walker, Jacob, Kabra, Rishabh, Aboussouan, Eric, Sun, Jennifer, Kipf, Thomas, Doersch, Carl, Pătrăucean, Viorica, Damen, Dima, Luc, Pauline, Sajjadi, Mehdi S. M., Zisserman, Andrew
Scaling has not yet been convincingly demonstrated for pure self-supervised learning from video. However, prior work has focused evaluations on semantic-related tasks $\unicode{x2013}$ action classification, ImageNet classification, etc. In this paper we focus on evaluating self-supervised learning on non-semantic vision tasks that are more spatial (3D) and temporal (+1D = 4D), such as camera pose estimation, point and object tracking, and depth estimation. We show that by learning from very large video datasets, masked auto-encoding (MAE) with transformer video models actually scales, consistently improving performance on these 4D tasks, as model size increases from 20M all the way to the largest by far reported self-supervised video model $\unicode{x2013}$ 22B parameters. Rigorous apples-to-apples comparison with many recent image and video models demonstrates the benefits of scaling 4D representations.
Learning from One Continuous Video Stream
Carreira, João, King, Michael, Pătrăucean, Viorica, Gokay, Dilara, Ionescu, Cătălin, Yang, Yi, Zoran, Daniel, Heyward, Joseph, Doersch, Carl, Aytar, Yusuf, Damen, Dima, Zisserman, Andrew
We introduce a framework for online learning from a single continuous video stream -- the way people and animals learn, without mini-batches, data augmentation or shuffling. This poses great challenges given the high correlation between consecutive video frames and there is very little prior work on it. Our framework allows us to do a first deep dive into the topic and includes a collection of streams and tasks composed from two existing video datasets, plus methodology for performance evaluation that considers both adaptation and generalization. We employ pixel-to-pixel modelling as a practical and flexible way to switch between pre-training and single-stream evaluation as well as between arbitrary tasks, without ever requiring changes to models and always using the same pixel loss. Equipped with this framework we obtained large single-stream learning gains from pre-training with a novel family of future prediction tasks, found that momentum hurts, and that the pace of weight updates matters. The combination of these insights leads to matching the performance of IID learning with batch size 1, when using the same architecture and without costly replay buffers.
Alchemy: A structured task distribution for meta-reinforcement learning
Wang, Jane X., King, Michael, Porcel, Nicolas, Kurth-Nelson, Zeb, Zhu, Tina, Deck, Charlie, Choy, Peter, Cassin, Mary, Reynolds, Malcolm, Song, Francis, Buttimore, Gavin, Reichert, David P., Rabinowitz, Neil, Matthey, Loic, Hassabis, Demis, Lerchner, Alexander, Botvinick, Matthew
There has been rapidly growing interest in meta-learning as a method for increasing the flexibility and sample efficiency of reinforcement learning. One problem in this area of research, however, has been a scarcity of adequate benchmark tasks. In general, the structure underlying past benchmarks has either been too simple to be inherently interesting, or too ill-defined to support principled analysis. In the present work, we introduce a new benchmark for meta-RL research, which combines structural richness with structural transparency. Alchemy is a 3D video game, implemented in Unity, which involves a latent causal structure that is resampled procedurally from episode to episode, affording structure learning, online inference, hypothesis testing and action sequencing based on abstract domain knowledge. We evaluate a pair of powerful RL agents on Alchemy and present an in-depth analysis of one of these agents. Results clearly indicate a frank and specific failure of meta-learning, providing validation for Alchemy as a challenging benchmark for meta-RL. Concurrent with this report, we are releasing Alchemy as public resource, together with a suite of analysis tools and sample agent trajectories.