Kim, Young-Ho
AI-driven View Guidance System in Intra-cardiac Echocardiography Imaging
Huh, Jaeyoung, Klein, Paul, Funka-Lea, Gareth, Sharma, Puneet, Kapoor, Ankur, Kim, Young-Ho
Abstract-- Intra-cardiac Echocardiography (ICE) is a crucial imaging modality used in electrophysiology (EP) and structural heart disease (SHD) interventions, providing realtime, high-resolution views from within the heart. Despite its advantages, effective manipulation of the ICE catheter requires significant expertise, which can lead to inconsistent outcomes, particularly among less experienced operators. To address this challenge, we propose an AIdriven closed-loop view guidance system with human-inthe-loop feedback, designed to assist users in navigating ICE imaging without requiring specialized knowledge. Our method models the relative position and orientation vectors between arbitrary views and clinically defined ICE views in a spatial coordinate system, guiding users on how to manipulate the ICE catheter to transition from the current view to the desired view over time. Overview of the proposed view guidance system. The primary use cases of the ICE imaging involve visualizing target anatomy, detecting and tracking therapeutic devices, and validating treatments in real-time. HE Intra-cardiac Echocardiography (ICE) is a sophisticated imaging modality that offers real-time, highresolution have significant expertise in interpreting anatomical views views from within the heart, making it an invaluable via ICE images and skillfully maneuvering the ICE catheter tool in both electrophysiology (EP) and structural heart disease using two knobs (anterior-posterior, right-left) and the rotating/translating (SHD) interventions.
Goal-conditioned reinforcement learning for ultrasound navigation guidance
Amadou, Abdoul Aziz, Singh, Vivek, Ghesu, Florin C., Kim, Young-Ho, Stanciulescu, Laura, Sai, Harshitha P., Sharma, Puneet, Young, Alistair, Rajani, Ronak, Rhode, Kawal
Transesophageal echocardiography (TEE) plays a pivotal role in cardiology for diagnostic and interventional procedures. However, using it effectively requires extensive training due to the intricate nature of image acquisition and interpretation. To enhance the efficiency of novice sonographers and reduce variability in scan acquisitions, we propose a novel ultrasound (US) navigation assistance method based on contrastive learning as goal-conditioned reinforcement learning (GCRL). We augment the previous framework using a novel contrastive patient batching method (CPB) and a data-augmented contrastive loss, both of which we demonstrate are essential to ensure generalization to anatomical variations across patients. The proposed framework enables navigation to both standard diagnostic as well as intricate interventional views with a single model. Our method was developed with a large dataset of 789 patients and obtained an average error of 6.56 mm in position and 9.36 degrees in angle on a testing dataset of 140 patients, which is competitive or superior to models trained on individual views. Furthermore, we quantitatively validate our method's ability to navigate to interventional views such as the Left Atrial Appendage (LAA) view used in LAA closure. Our approach holds promise in providing valuable guidance during transesophageal ultrasound examinations, contributing to the advancement of skill acquisition for cardiac ultrasound practitioners.
Cardiac ultrasound simulation for autonomous ultrasound navigation
Amadou, Abdoul Aziz, Peralta, Laura, Dryburgh, Paul, Klein, Paul, Petkov, Kaloian, Housden, Richard James, Singh, Vivek, Liao, Rui, Kim, Young-Ho, Ghesu, Florin Christian, Mansi, Tommaso, Rajani, Ronak, Young, Alistair, Rhode, Kawal
Ultrasound is well-established as an imaging modality for diagnostic and interventional purposes. However, the image quality varies with operator skills as acquiring and interpreting ultrasound images requires extensive training due to the imaging artefacts, the range of acquisition parameters and the variability of patient anatomies. Automating the image acquisition task could improve acquisition reproducibility and quality but training such an algorithm requires large amounts of navigation data, not saved in routine examinations. Thus, we propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions, such that this pipeline can later be used by learning algorithms for navigation. We present a novel simulation pipeline which uses segmentations from other modalities, an optimized volumetric data representation and GPU-accelerated Monte Carlo path tracing to generate view-dependent and patient-specific ultrasound images. We extensively validate the correctness of our pipeline with a phantom experiment, where structures' sizes, contrast and speckle noise properties are assessed. Furthermore, we demonstrate its usability to train neural networks for navigation in an echocardiography view classification experiment by generating synthetic images from more than 1000 patients. Networks pre-trained with our simulations achieve significantly superior performance in settings where large real datasets are not available, especially for under-represented classes. The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
ChaCha: Leveraging Large Language Models to Prompt Children to Share Their Emotions about Personal Events
Seo, Woosuk, Yang, Chanmo, Kim, Young-Ho
Children typically learn to identify and express emotions through sharing their stories and feelings with others, particularly their family. However, it is challenging for parents or siblings to have emotional communication with children since children are still developing their communication skills. We present ChaCha, a chatbot that encourages and guides children to share personal events and associated emotions. ChaCha combines a state machine and large language models (LLMs) to keep the dialogue on track while carrying on free-form conversations. Through an exploratory study with 20 children (aged 8-12), we examine how ChaCha prompts children to share personal events and guides them to describe associated emotions. Participants perceived ChaCha as a close friend and shared their stories on various topics, such as family trips and personal achievements. Based on the findings, we discuss opportunities for leveraging LLMs to design child-friendly chatbots to support children in sharing emotions.
MindfulDiary: Harnessing Large Language Model to Support Psychiatric Patients' Journaling
Kim, Taewan, Bae, Seolyeong, Kim, Hyun Ah, Lee, Su-woo, Hong, Hwajung, Yang, Chanmo, Kim, Young-Ho
In the mental health domain, Large Language Models (LLMs) offer promising new opportunities, though their inherent complexity and low controllability have raised questions about their suitability in clinical settings. We present MindfulDiary, a mobile journaling app incorporating an LLM to help psychiatric patients document daily experiences through conversation. Designed in collaboration with mental health professionals (MHPs), MindfulDiary takes a state-based approach to safely comply with the experts' guidelines while carrying on free-form conversations. Through a four-week field study involving 28 patients with major depressive disorder and five psychiatrists, we found that MindfulDiary supported patients in consistently enriching their daily records and helped psychiatrists better empathize with their patients through an understanding of their thoughts and daily contexts. Drawing on these findings, we discuss the implications of leveraging LLMs in the mental health domain, bridging the technical feasibility and their integration into clinical settings.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-Defined Criteria
Kim, Tae Soo, Lee, Yoonjoo, Shin, Jamin, Kim, Young-Ho, Kim, Juho
By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts.
Leveraging Large Language Models to Power Chatbots for Collecting User Self-Reported Data
Wei, Jing, Kim, Sungdong, Jung, Hyunhoon, Kim, Young-Ho
Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts. Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing a given goal, such as collecting self-report data from users. We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs with different structures and personas. Through an online study (N = 48) where participants conversed with chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics affected the conversation flows and users' perceptions of chatbots. Our chatbots covered 79% of the desired information slots during conversations, and the designs of prompts and topics significantly influenced the conversation flows and the data collection performance. We discuss the opportunities and challenges of building chatbots with LLMs.
PlanFitting: Tailoring Personalized Exercise Plans with Large Language Models
Shin, Donghoon, Hsieh, Gary, Kim, Young-Ho
A personally tailored exercise regimen is crucial to ensuring sufficient physical activities, yet challenging to create as people have complex schedules and considerations and the creation of plans often requires iterations with experts. We present PlanFitting, a conversational AI that assists in personalized exercise planning. Leveraging generative capabilities of large language models, PlanFitting enables users to describe various constraints and queries in natural language, thereby facilitating the creation and refinement of their weekly exercise plan to suit their specific circumstances while staying grounded in foundational principles. Through a user study where participants (N=18) generated a personalized exercise plan using PlanFitting and expert planners (N=3) evaluated these plans, we identified the potential of PlanFitting in generating personalized, actionable, and evidence-based exercise plans. We discuss future design opportunities for AI assistants in creating plans that better comply with exercise principles and accommodate personal constraints.
Computational Approaches for App-to-App Retrieval and Design Consistency Check
Park, Seokhyeon, Kim, Wonjae, Kim, Young-Ho, Seo, Jinwook
Extracting semantic representations from mobile user interfaces (UI) and using the representations for designers' decision-making processes have shown the potential to be effective computational design support tools. Current approaches rely on machine learning models trained on small-sized mobile UI datasets to extract semantic vectors and use screenshot-to-screenshot comparison to retrieve similar-looking UIs given query screenshots. However, the usability of these methods is limited because they are often not open-sourced and have complex training pipelines for practitioners to follow, and are unable to perform screenshot set-to-set (i.e., app-to-app) retrieval. To this end, we (1) employ visual models trained with large web-scale images and test whether they could extract a UI representation in a zero-shot way and outperform existing specialized models, and (2) use mathematically founded methods to enable app-to-app retrieval and design consistency analysis. Our experiments show that our methods not only improve upon previous retrieval models but also enable multiple new applications.
Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations
Sun, Tong Steven, Gao, Yuyang, Khaladkar, Shubham, Liu, Sijia, Zhao, Liang, Kim, Young-Ho, Hong, Sungsoo Ray
The local explanation provides heatmaps on images to explain how Convolutional Neural Networks (CNNs) derive their output. Due to its visual straightforwardness, the method has been one of the most popular explainable AI (XAI) methods for diagnosing CNNs. Through our formative study (S1), however, we captured ML engineers' ambivalent perspective about the local explanation as a valuable and indispensable envision in building CNNs versus the process that exhausts them due to the heuristic nature of detecting vulnerability. Moreover, steering the CNNs based on the vulnerability learned from the diagnosis seemed highly challenging. To mitigate the gap, we designed DeepFuse, the first interactive design that realizes the direct feedback loop between a user and CNNs in diagnosing and revising CNN's vulnerability using local explanations. DeepFuse helps CNN engineers to systemically search "unreasonable" local explanations and annotate the new boundaries for those identified as unreasonable in a labor-efficient manner. Next, it steers the model based on the given annotation such that the model doesn't introduce similar mistakes. We conducted a two-day study (S2) with 12 experienced CNN engineers. Using DeepFuse, participants made a more accurate and "reasonable" model than the current state-of-the-art. Also, participants found the way DeepFuse guides case-based reasoning can practically improve their current practice. We provide implications for design that explain how future HCI-driven design can move our practice forward to make XAI-driven insights more actionable.