Kim, Taehee
Can Tool-augmented Large Language Models be Aware of Incomplete Conditions?
Yang, Seungbin, Park, ChaeHun, Kim, Taehee, Choo, Jaegul
Recent advancements in integrating large language models (LLMs) with tools have allowed the models to interact with real-world environments. However, these tool-augmented LLMs often encounter incomplete scenarios when users provide partial information or the necessary tools are unavailable. Recognizing and managing such scenarios is crucial for LLMs to ensure their reliability, but this exploration remains understudied. This study examines whether LLMs can identify incomplete conditions and appropriately determine when to refrain from using tools. To this end, we address a dataset by manipulating instances from two datasets by removing necessary tools or essential information for tool invocation. We confirm that most LLMs are challenged to identify the additional information required to utilize specific tools and the absence of appropriate tools. Our research can contribute to advancing reliable LLMs by addressing scenarios that commonly arise during interactions between humans and LLMs.
Pretraining Vision-Language Model for Difference Visual Question Answering in Longitudinal Chest X-rays
Cho, Yeongjae, Kim, Taehee, Shin, Heejun, Cho, Sungzoon, Shin, Dongmyung
Difference visual question answering (diff-VQA) is a challenging task that requires answering complex questions based on differences between a pair of images. This task is particularly important in reading chest X-ray images because radiologists often compare multiple images of the same patient taken at different times to track disease progression and changes in its severity in their clinical practice. However, previous works focused on designing specific network architectures for the diff-VQA task, missing opportunities to enhance the model's performance using a pretrained vision-language model (VLM). Here, we introduce a novel VLM called PLURAL, which is pretrained on natural and longitudinal chest X-ray data for the diff-VQA task. The model is developed using a step-by-step approach, starting with being pretrained on natural images and texts, followed by being trained using longitudinal chest X-ray data. The longitudinal data consist of pairs of X-ray images, along with question-answer sets and radiologist's reports that describe the changes in lung abnormalities and diseases over time. Our experimental results show that the PLURAL model outperforms state-of-the-art methods not only in diff-VQA for longitudinal X-rays but also in conventional VQA for a single X-ray image. Through extensive experiments, we demonstrate the effectiveness of the proposed VLM architecture and pretraining method in improving the model's performance.
Generalizing Visual Question Answering from Synthetic to Human-Written Questions via a Chain of QA with a Large Language Model
Kim, Taehee, Cho, Yeongjae, Shin, Heejun, Jo, Yohan, Shin, Dongmyung
Visual question answering (VQA) is a task where an image is given, and a series of questions are asked about the image. To build an efficient VQA algorithm, a large amount of QA data is required which is very expensive. Generating synthetic QA pairs based on templates is a practical way to obtain data. However, VQA models trained on those data do not perform well on complex, human-written questions. To address this issue, we propose a new method called {\it chain of QA for human-written questions} (CoQAH). CoQAH utilizes a sequence of QA interactions between a large language model and a VQA model trained on synthetic data to reason and derive logical answers for human-written questions. We tested the effectiveness of CoQAH on two types of human-written VQA datasets for 3D-rendered and chest X-ray images and found that it achieved state-of-the-art accuracy in both types of data. Notably, CoQAH outperformed general vision-language models, VQA models, and medical foundation models with no finetuning.
Correlation-Driven Multi-Level Multimodal Learning for Anomaly Detection on Multiple Energy Sources
Kim, Taehee, Kwon, Hyuk-Yoon
Advanced metering infrastructure (AMI) has been widely used as an intelligent energy consumption measurement system. Electric power was the representative energy source that can be collected by AMI; most existing studies to detect abnormal energy consumption have focused on a single energy source, i.e., power. Recently, other energy sources such as water, gas, and heating have also been actively collected. As a result, it is necessary to develop a unified methodology for anomaly detection across multiple energy sources; however, research efforts have rarely been made to tackle this issue. The inherent difficulty with this issue stems from the fact that anomalies are not usually annotated. Moreover, existing works of anomaly definition depend on only individual energy sources. In this paper, we first propose a method for defining anomalies considering not only individual energy sources but also correlations between them. Then, we propose a new Correlation-driven Multi-Level Multimodal Learning model for anomaly detection on multiple energy sources. The distinguishing property of the model incorporates multiple energy sources in multi-levels based on the strengths of the correlations between them. Furthermore, we generalize the proposed model in order to integrate arbitrary new energy sources with further performance improvement, considering not only correlated but also non-correlated sources. Through extensive experiments on real-world datasets consisting of three to five energy sources, we demonstrate that the proposed model clearly outperforms the existing multimodal learning and recent time-series anomaly detection models, and we observe that our model makes further the performance improvement as more correlated or non-correlated energy sources are integrated.
PePe: Personalized Post-editing Model utilizing User-generated Post-edits
Lee, Jihyeon, Kim, Taehee, Tae, Yunwon, Park, Cheonbok, Choo, Jaegul
Incorporating personal preference is crucial in advanced machine translation tasks. Despite the recent advancement of machine translation, it remains a demanding task to properly reflect personal style. In this paper, we introduce a personalized automatic post-editing framework to address this challenge, which effectively generates sentences considering distinct Figure 1: Example of a personal post-editing triplet personal behaviors. To build this framework, (i.e., source (src), machine translation (mt), and postedit we first collect post-editing data that connotes (pe)) given the source text in English and the translated the user preference from a live machine translation text in Korean. A post-edited sentence does not system. Specifically, real-world users enter only contain error correction of an initial machine translation source sentences for translation and edit result but also reflects individual preference. For the machine-translated outputs according to instance, a human post-editor modifies the word "primarily" the user's preferred style. We then propose to "primary," but also change " 공헌 " to its synonym a model that combines a discriminator module " 기여 " while keeping the rest as it is (e.g., "research").
Meta-Learning for Low-Resource Unsupervised Neural MachineTranslation
Tae, Yunwon, Park, Cheonbok, Kim, Taehee, Yang, Soyoung, Khan, Mohammad Azam, Park, Eunjeong, Qin, Tao, Choo, Jaegul
Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-4 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baseline models.