Kim, Najoung
Transformers Struggle to Learn to Search
Saparov, Abulhair, Pawar, Srushti, Pimpalgaonkar, Shreyas, Joshi, Nitish, Pang, Richard Yuanzhe, Padmakumar, Vishakh, Kazemi, Seyed Mehran, Kim, Najoung, He, He
Search is an ability foundational in many important tasks, and recent studies have shown that large language models (LLMs) struggle to perform search robustly. It is unknown whether this inability is due to a lack of data, insufficient model parameters, or fundamental limitations of the transformer architecture. In this work, we use the foundational graph connectivity problem as a testbed to generate effectively limitless high-coverage data to train small transformers and test whether they can learn to perform search. We find that, when given the right training distribution, the transformer is able to learn to search. We analyze the algorithm that the transformer has learned through a novel mechanistic interpretability technique that enables us to extract the computation graph from the trained model. We find that for each vertex in the input graph, transformers compute the set of vertices reachable from that vertex. Each layer then progressively expands these sets, allowing the model to search over a number of vertices exponential in the number of layers. However, we find that as the input graph size increases, the transformer has greater difficulty in learning the task. This difficulty is not resolved even as the number of parameters is increased, suggesting that increasing model scale will not lead to robust search abilities. We also find that performing search in-context (i.e., chain-of-thought) does not resolve this inability to learn to search on larger graphs.
Is artificial intelligence still intelligence? LLMs generalize to novel adjective-noun pairs, but don't mimic the full human distribution
Ross, Hayley, Davidson, Kathryn, Kim, Najoung
Inferences from adjective-noun combinations like "Is artificial intelligence still intelligence?" provide a good test bed for LLMs' understanding of meaning and compositional generalization capability, since there are many combinations which are novel to both humans and LLMs but nevertheless elicit convergent human judgments. We study a range of LLMs and find that the largest models we tested are able to draw human-like inferences when the inference is determined by context and can generalize to unseen adjective-noun combinations. We also propose three methods to evaluate LLMs on these inferences out of context, where there is a distribution of human-like answers rather than a single correct answer. We find that LLMs show a human-like distribution on at most 75\% of our dataset, which is promising but still leaves room for improvement.
Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation
Collins, Katherine M., Kim, Najoung, Bitton, Yonatan, Rieser, Verena, Omidshafiei, Shayegan, Hu, Yushi, Chen, Sherol, Dutta, Senjuti, Chang, Minsuk, Lee, Kimin, Liang, Youwei, Evans, Georgina, Singla, Sahil, Li, Gang, Weller, Adrian, He, Junfeng, Ramachandran, Deepak, Dvijotham, Krishnamurthy Dj
Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.
Code Pretraining Improves Entity Tracking Abilities of Language Models
Kim, Najoung, Schuster, Sebastian, Toshniwal, Shubham
Recent work has provided indirect evidence that pretraining language models on code improves the ability of models to track state changes of discourse entities expressed in natural language. In this work, we systematically test this claim by comparing pairs of language models on their entity tracking performance. Critically, the pairs consist of base models and models trained on top of these base models with additional code data. We extend this analysis to additionally examine the effect of math training, another highly structured data type, and alignment tuning, an important step for enhancing the usability of models. We find clear evidence that models additionally trained on large amounts of code outperform the base models. On the other hand, we find no consistent benefit of additional math training or alignment tuning across various model families.
Syn-QA2: Evaluating False Assumptions in Long-tail Questions with Synthetic QA Datasets
Daswani, Ashwin, Sawant, Rohan, Kim, Najoung
Sensitivity to false assumptions (or false premises) in information-seeking questions is critical for robust question-answering (QA) systems. Recent work has shown that false assumptions in naturally occurring questions pose challenges to current models, with low performance on both generative QA and simple detection tasks (Kim et al. 2023). However, the focus of existing work on naturally occurring questions leads to a gap in the analysis of model behavior on the long tail of the distribution of possible questions. To this end, we introduce Syn-(QA)$^2$, a set of two synthetically generated QA datasets: one generated using perturbed relations from Wikidata, and the other by perturbing HotpotQA (Yang et al. 2018). Our findings from evaluating a range of large language models are threefold: (1) false assumptions in QA are challenging, echoing the findings of prior work, (2) the binary detection task is challenging even compared to the difficulty of generative QA itself, possibly due to the linguistic structure of the problem, and (3) the detection task is more challenging with long-tail questions compared to naturally occurring questions, highlighting the utility of our synthetic datasets and generation method.
Personas as a Way to Model Truthfulness in Language Models
Joshi, Nitish, Rando, Javier, Saparov, Abulhair, Kim, Najoung, He, He
Large language models (LLMs) are trained on vast amounts of text from the internet, which contains both factual and misleading information about the world. While unintuitive from a classic view of LMs, recent work has shown that the truth value of a statement can be elicited from the model's representations. This paper presents an explanation for why LMs appear to know the truth despite not being trained with truth labels. We hypothesize that the pretraining data is generated by groups of (un)truthful agents whose outputs share common features, and they form a (un)truthful persona. By training on this data, LMs can infer and represent the persona in its activation space. This allows the model to separate truth from falsehoods and controls the truthfulness of its generation. We show evidence for the persona hypothesis via two observations: (1) we can probe whether a model's answer will be truthful before it is generated; (2) finetuning a model on a set of facts improves its truthfulness on unseen topics. Next, using arithmetics as a synthetic environment, we show that structures of the pretraining data are crucial for the model to infer the truthful persona. Overall, our findings suggest that models can exploit hierarchical structures in the data to learn abstract concepts like truthfulness. Large language models (LLMs) are pretrained on increasing amounts of data from the internet (Brown et al., 2020; Chowdhery et al., 2022)--a noisy corpus which contains both factual and incorrect statements about the world. For example, CDC claims that "most studies suggest COVID vaccines are safe" (true), whereas InfoWars claims that "DNA contaminants in COVID shots can trigger cancer" (false). Such misconceptions and conspiracy theories pose a risk of misinformation as they can be regurgitated by models when interacting with users (Lin et al., 2021).
Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples
Saparov, Abulhair, Pang, Richard Yuanzhe, Padmakumar, Vishakh, Joshi, Nitish, Kazemi, Seyed Mehran, Kim, Najoung, He, He
Given the intractably large size of the space of proofs, any model that is capable of general deductive reasoning must generalize to proofs of greater complexity. Recent studies have shown that large language models (LLMs) possess some abstract deductive reasoning ability given chain-of-thought prompts. However, they have primarily been tested on proofs using modus ponens or of a specific size, and from the same distribution as the in-context examples. To measure the general deductive reasoning ability of LLMs, we test on a broad set of deduction rules and measure their ability to generalize to more complex proofs from simpler demonstrations from multiple angles: depth-, width-, and compositional generalization. To facilitate systematic exploration, we construct a new synthetic and programmable reasoning dataset that enables control over deduction rules and proof complexity. Our experiments on four LLMs of various sizes and training objectives show that they are able to generalize to compositional proofs. However, they have difficulty generalizing to longer proofs, and they require explicit demonstrations to produce hypothetical subproofs, specifically in proof by cases and proof by contradiction.
Abstraction via exemplars? A representational case study on lexical category inference in BERT
Misra, Kanishka, Kim, Najoung
Exemplar based accounts are often considered to be in direct opposition to pure linguistic abstraction in explaining language learners' ability to generalize to novel expressions. However, the recent success of neural network language models on linguistically sensitive tasks suggests that perhaps abstractions can arise via the encoding of exemplars. We provide empirical evidence for this claim by adapting an existing experiment that studies how an LM (BERT) generalizes the usage of novel tokens that belong to lexical categories such as Noun/Verb/Adjective/Adverb from exposure to only a single instance of their usage. We analyze the representational behavior of the novel tokens in these experiments, and find that BERT's capacity to generalize to unseen expressions involving the use of these novel tokens constitutes the movement of novel token representations towards regions of known category exemplars in two-dimensional space. Our results suggest that learners' encoding of exemplars can indeed give rise to abstraction like behavior.
SLOG: A Structural Generalization Benchmark for Semantic Parsing
Li, Bingzhi, Donatelli, Lucia, Koller, Alexander, Linzen, Tal, Yao, Yuekun, Kim, Najoung
The goal of compositional generalization benchmarks is to evaluate how well models generalize to new complex linguistic expressions. Existing benchmarks often focus on lexical generalization, the interpretation of novel lexical items in syntactic structures familiar from training; structural generalization tasks, where a model needs to interpret syntactic structures that are themselves unfamiliar from training, are often underrepresented, resulting in overly optimistic perceptions of how well models can generalize. We introduce SLOG, a semantic parsing dataset that extends COGS (Kim and Linzen, 2020) with 17 structural generalization cases. In our experiments, the generalization accuracy of Transformer models, including pretrained ones, only reaches 40.6%, while a structure-aware parser only achieves 70.8%. These results are far from the near-perfect accuracy existing models achieve on COGS, demonstrating the role of SLOG in foregrounding the large discrepancy between models' lexical and structural generalization capacities.
Entity Tracking in Language Models
Kim, Najoung, Schuster, Sebastian
Keeping track of how states of entities change as a text or dialog unfolds is a key prerequisite to discourse understanding. Yet, there have been few systematic investigations into the ability of large language models (LLMs) to track discourse entities. In this work, we present a task probing to what extent a language model can infer the final state of an entity given an English description of the initial state and a series of state-changing operations. We use this task to first investigate whether Flan-T5, GPT-3 and GPT-3.5 can track the state of entities, and find that only GPT-3.5 models, which have been pretrained on large amounts of code, exhibit this ability. We then investigate whether smaller models pretrained primarily on text can learn to track entities, through finetuning T5 on several training/evaluation splits. While performance degrades for more complex splits, we find that even when evaluated on a different set of entities from training or longer operation sequences, a finetuned model can perform non-trivial entity tracking. Taken together, these results suggest that language models can learn to track entities but pretraining on text corpora alone does not make this capacity surface.