Goto

Collaborating Authors

 Kim, June-Woo


Noise-Agnostic Multitask Whisper Training for Reducing False Alarm Errors in Call-for-Help Detection

arXiv.org Artificial Intelligence

Keyword spotting is often implemented by keyword classifier to the encoder in acoustic models, enabling the classification of predefined or open vocabulary keywords. Although keyword spotting is a crucial task in various applications and can be extended to call-for-help detection in emergencies, however, the previous method often suffers from scalability limitations due to retraining required to introduce new keywords or adapt to changing contexts. We explore a simple yet effective approach that leverages off-the-shelf pretrained ASR models to address these challenges, especially in call-for-help detection scenarios. Furthermore, we observed a substantial increase in false alarms when deploying call-for-help detection system in real-world scenarios due to noise introduced by microphones or different environments. To address this, we propose a novel noise-agnostic multitask learning approach that integrates a noise classification head into the ASR encoder. Our method enhances the model's robustness to noisy environments, leading to a significant reduction in false alarms and improved overall call-for-help performance. Despite the added complexity of multitask learning, our approach is computationally efficient and provides a promising solution for call-for-help detection in real-world scenarios.


BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification

arXiv.org Artificial Intelligence

Respiratory sound classification (RSC) is challenging due to varied acoustic signatures, primarily influenced by patient demographics and recording environments. To address this issue, we introduce a text-audio multimodal model that utilizes metadata of respiratory sounds, which provides useful complementary information for RSC. Specifically, we fine-tune a pretrained text-audio multimodal model using free-text descriptions derived from the sound samples' metadata which includes the gender and age of patients, type of recording devices, and recording location on the patient's body. Our method achieves state-of-the-art performance on the ICBHI dataset, surpassing the previous best result by a notable margin of 1.17%. This result validates the effectiveness of leveraging metadata and respiratory sound samples in enhancing RSC performance. Additionally, we investigate the model performance in the case where metadata is partially unavailable, which may occur in real-world clinical setting.


RepAugment: Input-Agnostic Representation-Level Augmentation for Respiratory Sound Classification

arXiv.org Artificial Intelligence

Recent advancements in AI have democratized its deployment as a healthcare assistant. While pretrained models from large-scale visual and audio datasets have demonstrably generalized to this task, surprisingly, no studies have explored pretrained speech models, which, as human-originated sounds, intuitively would share closer resemblance to lung sounds. This paper explores the efficacy of pretrained speech models for respiratory sound classification. We find that there is a characterization gap between speech and lung sound samples, and to bridge this gap, data augmentation is essential. However, the most widely used augmentation technique for audio and speech, SpecAugment, requires 2-dimensional spectrogram format and cannot be applied to models pretrained on speech waveforms. To address this, we propose RepAugment, an input-agnostic representation-level augmentation technique that outperforms SpecAugment, but is also suitable for respiratory sound classification with waveform pretrained models. Experimental results show that our approach outperforms the SpecAugment, demonstrating a substantial improvement in the accuracy of minority disease classes, reaching up to 7.14%.


Stethoscope-guided Supervised Contrastive Learning for Cross-domain Adaptation on Respiratory Sound Classification

arXiv.org Artificial Intelligence

Despite the remarkable advances in deep learning technology, achieving satisfactory performance in lung sound classification remains a challenge due to the scarcity of available data. Moreover, the respiratory sound samples are collected from a variety of electronic stethoscopes, which could potentially introduce biases into the trained models. When a significant distribution shift occurs within the test dataset or in a practical scenario, it can substantially decrease the performance. To tackle this issue, we introduce cross-domain adaptation techniques, which transfer the knowledge from a source domain to a distinct target domain. In particular, by considering different stethoscope types as individual domains, we propose a novel stethoscope-guided supervised contrastive learning approach. This method can mitigate any domain-related disparities and thus enables the model to distinguish respiratory sounds of the recording variation of the stethoscope. The experimental results on the ICBHI dataset demonstrate that the proposed methods are effective in reducing the domain dependency and achieving the ICBHI Score of 61.71%, which is a significant improvement of 2.16% over the baseline.


Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on Respiratory Sound Classification

arXiv.org Artificial Intelligence

Respiratory sound contains crucial information for the early diagnosis of fatal lung diseases. Since the COVID-19 pandemic, there has been a growing interest in contact-free medical care based on electronic stethoscopes. To this end, cutting-edge deep learning models have been developed to diagnose lung diseases; however, it is still challenging due to the scarcity of medical data. In this study, we demonstrate that the pretrained model on large-scale visual and audio datasets can be generalized to the respiratory sound classification task. In addition, we introduce a straightforward Patch-Mix augmentation, which randomly mixes patches between different samples, with Audio Spectrogram Transformer (AST). We further propose a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space. Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.


Adversarial Fine-tuning using Generated Respiratory Sound to Address Class Imbalance

arXiv.org Artificial Intelligence

Deep generative models have emerged as a promising approach in the medical image domain to address data scarcity. However, their use for sequential data like respiratory sounds is less explored. In this work, we propose a straightforward approach to augment imbalanced respiratory sound data using an audio diffusion model as a conditional neural vocoder. We also demonstrate a simple yet effective adversarial fine-tuning method to align features between the synthetic and real respiratory sound samples to improve respiratory sound classification performance. Our experimental results on the ICBHI dataset demonstrate that the proposed adversarial fine-tuning is effective, while only using the conventional augmentation method shows performance degradation. Moreover, our method outperforms the baseline by 2.24% on the ICBHI Score and improves the accuracy of the minority classes up to 26.58%.


End-to-end Multimodal Emotion and Gender Recognition with Dynamic Weights of Joint Loss

arXiv.org Machine Learning

Multi-task learning (MTL) is one of the method for improving generalizability of multiple tasks. In order to perform multiple classification tasks with one neural network model, the losses of each task should be combined. Previous studies have mostly focused on prediction of multiple tasks using joint loss with static weights for training model. Choosing weights between tasks have not taken any considerations while it is set by uniformly or empirically. In this study, we propose a method to make joint loss using dynamic weights to improve total performance not an individual performance of tasks, and apply this method to end-to-end multimodal emotion and gender recognition model using audio and video data. This approach provides proper weights for each loss of the tasks when training ends. In our experiment, a performance of emotion and gender recognition with proposed method shows lower joint loss which is computed as negative log-likelihood than the one with static weights of joint loss. Also, our proposed model shows better generalizability than compared models. In our best knowledge, this research shows the strength of dynamic weights of joint loss for maximizing total performance at first in emotion and gender recognition task.