Kim, Jinseok
LLM-guided Plan and Retrieval: A Strategic Alignment for Interpretable User Satisfaction Estimation in Dialogue
Kim, Sangyeop, Park, Sohhyung, Jung, Jaewon, Kim, Jinseok, Cho, Sungzoon
Understanding user satisfaction with conversational systems, known as User Satisfaction Estimation (USE), is essential for assessing dialogue quality and enhancing user experiences. However, existing methods for USE face challenges due to limited understanding of underlying reasons for user dissatisfaction and the high costs of annotating user intentions. To address these challenges, we propose PRAISE (Plan and Retrieval Alignment for Interpretable Satisfaction Estimation), an interpretable framework for effective user satisfaction prediction. PRAISE operates through three key modules. The Strategy Planner develops strategies, which are natural language criteria for classifying user satisfaction. The Feature Retriever then incorporates knowledge on user satisfaction from Large Language Models (LLMs) and retrieves relevance features from utterances. Finally, the Score Analyzer evaluates strategy predictions and classifies user satisfaction. Experimental results demonstrate that PRAISE achieves state-of-the-art performance on three benchmarks for the USE task. Beyond its superior performance, PRAISE offers additional benefits. It enhances interpretability by providing instance-level explanations through effective alignment of utterances with strategies. Moreover, PRAISE operates more efficiently than existing approaches by eliminating the need for LLMs during the inference phase.
Revisiting gender bias research in bibliometrics: Standardizing methodological variability using Scholarly Data Analysis (SoDA) Cards
Lee, HaeJin, Mishra, Shubhanshu, Mishra, Apratim, You, Zhiwen, Kim, Jinseok, Diesner, Jana
Gender biases in scholarly metrics remain a persistent concern, despite numerous bibliometric studies exploring their presence and absence across productivity, impact, acknowledgment, and self-citations. However, methodological inconsistencies, particularly in author name disambiguation and gender identification, limit the reliability and comparability of these studies, potentially perpetuating misperceptions and hindering effective interventions. A review of 70 relevant publications over the past 12 years reveals a wide range of approaches, from name-based and manual searches to more algorithmic and gold-standard methods, with no clear consensus on best practices. This variability, compounded by challenges such as accurately disambiguating Asian names and managing unassigned gender labels, underscores the urgent need for standardized and robust methodologies. To address this critical gap, we propose the development and implementation of ``Scholarly Data Analysis (SoDA) Cards." These cards will provide a structured framework for documenting and reporting key methodological choices in scholarly data analysis, including author name disambiguation and gender identification procedures. By promoting transparency and reproducibility, SoDA Cards will facilitate more accurate comparisons and aggregations of research findings, ultimately supporting evidence-informed policymaking and enabling the longitudinal tracking of analytical approaches in the study of gender and other social biases in academia.
AMXFP4: Taming Activation Outliers with Asymmetric Microscaling Floating-Point for 4-bit LLM Inference
Lee, Janghwan, Park, Jiwoong, Kim, Jinseok, Kim, Yongjik, Oh, Jungju, Oh, Jinwook, Choi, Jungwook
Scaling Large Language Models (LLMs) with extended context lengths has increased the need for efficient low-bit quantization to manage their substantial computational demands. However, reducing precision to 4 bits frequently degrades performance due to activation outliers. To address this, we propose Asymmetric Microscaling 4-bit Floating-Point (AMXFP4) for efficient LLM inference. This novel data format leverages asymmetric shared scales to mitigate outliers while naturally capturing the asymmetry introduced by group-wise quantization. Unlike conventional 4-bit quantization methods that rely on data rotation and costly calibration, AMXFP4 uses asymmetric shared scales for direct 4-bit casting, achieving near-ideal quantization accuracy across various LLM tasks, including multi-turn conversations, long-context reasoning, and visual question answering. Our AMXFP4 format significantly outperforms MXFP4 and other leading quantization techniques, enabling robust, calibration-free 4-bit inference.
Safe-Embed: Unveiling the Safety-Critical Knowledge of Sentence Encoders
Kim, Jinseok, Jung, Jaewon, Kim, Sangyeop, Park, Sohyung, Cho, Sungzoon
Despite the impressive capabilities of Large Language Models (LLMs) in various tasks, their vulnerability to unsafe prompts remains a critical issue. These prompts can lead LLMs to generate responses on illegal or sensitive topics, posing a significant threat to their safe and ethical use. Existing approaches attempt to address this issue using classification models, but they have several drawbacks. With the increasing complexity of unsafe prompts, similarity search-based techniques that identify specific features of unsafe prompts provide a more robust and effective solution to this evolving problem. This paper investigates the potential of sentence encoders to distinguish safe from unsafe prompts, and the ability to classify various unsafe prompts according to a safety taxonomy. We introduce new pairwise datasets and the Categorical Purity (CP) metric to measure this capability. Our findings reveal both the effectiveness and limitations of existing sentence encoders, proposing directions to improve sentence encoders to operate as more robust safety detectors. Our code is available at https://github.com/JwdanielJung/Safe-Embed.
Beyond Binary Gender Labels: Revealing Gender Biases in LLMs through Gender-Neutral Name Predictions
You, Zhiwen, Lee, HaeJin, Mishra, Shubhanshu, Jeoung, Sullam, Mishra, Apratim, Kim, Jinseok, Diesner, Jana
Name-based gender prediction has traditionally categorized individuals as either female or male based on their names, using a binary classification system. That binary approach can be problematic in the cases of gender-neutral names that do not align with any one gender, among other reasons. Relying solely on binary gender categories without recognizing gender-neutral names can reduce the inclusiveness of gender prediction tasks. We introduce an additional gender category, i.e., "neutral", to study and address potential gender biases in Large Language Models (LLMs). We evaluate the performance of several foundational and large language models in predicting gender based on first names only. Additionally, we investigate the impact of adding birth years to enhance the accuracy of gender prediction, accounting for shifting associations between names and genders over time. Our findings indicate that most LLMs identify male and female names with high accuracy (over 80%) but struggle with gender-neutral names (under 40%), and the accuracy of gender prediction is higher for English-based first names than non-English names. The experimental results show that incorporating the birth year does not improve the overall accuracy of gender prediction, especially for names with evolving gender associations. We recommend using caution when applying LLMs for gender identification in downstream tasks, particularly when dealing with non-binary gender labels.
The impact of imbalanced training data on machine learning for author name disambiguation
Kim, Jinseok, Kim, Jenna
In supervised machine learning for author name disambiguation, negative training data are often dominantly larger than positive training data. This paper examines how the ratios of negative to positive training data can affect the performance of machine learning algorithms to disambiguate author names in bibliographic records. On multiple labeled datasets, three classifiers - Logistic Regression, Na\"ive Bayes, and Random Forest - are trained through representative features such as coauthor names, and title words extracted from the same training data but with various positive-negative training data ratios. Results show that increasing negative training data can improve disambiguation performance but with a few percent of performance gains and sometimes degrade it. Logistic Regression and Na\"ive Bayes learn optimal disambiguation models even with a base ratio (1:1) of positive and negative training data. Also, the performance improvement by Random Forest tends to quickly saturate roughly after 1:10 ~ 1:15. These findings imply that contrary to the common practice using all training data, name disambiguation algorithms can be trained using part of negative training data without degrading much disambiguation performance while increasing computational efficiency. This study calls for more attention from author name disambiguation scholars to methods for machine learning from imbalanced data.