Goto

Collaborating Authors

 Kim, Jinhong


HyperCLOVA X Technical Report

arXiv.org Artificial Intelligence

We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.


Enhanced Facet Generation with LLM Editing

arXiv.org Artificial Intelligence

In information retrieval, facet identification of a user query is an important task. If a search service can recognize the facets of a user's query, it has the potential to offer users a much broader range of search results. Previous studies can enhance facet prediction by leveraging retrieved documents and related queries obtained through a search engine. However, there are challenges in extending it to other applications when a search engine operates as part of the model. First, search engines are constantly updated. Therefore, additional information may change during training and test, which may reduce performance. The second challenge is that public search engines cannot search for internal documents. Therefore, a separate search system needs to be built to incorporate documents from private domains within the company. We propose two strategies that focus on a framework that can predict facets by taking only queries as input without a search engine. The first strategy is multi-task learning to predict SERP. By leveraging SERP as a target instead of a source, the proposed model deeply understands queries without relying on external modules. The second strategy is to enhance the facets by combining Large Language Model (LLM) and the small model. Overall performance improves when small model and LLM are combined rather than facet generation individually.