Goto

Collaborating Authors

 Kim, Jaeyoung


Multi-LLM Collaborative Caption Generation in Scientific Documents

arXiv.org Artificial Intelligence

Scientific figure captioning is a complex task that requires generating contextually appropriate descriptions of visual content. However, existing methods often fall short by utilizing incomplete information, treating the task solely as either an image-to-text or text summarization problem. This limitation hinders the generation of high-quality captions that fully capture the necessary details. Moreover, existing data sourced from arXiv papers contain low-quality captions, posing significant challenges for training large language models (LLMs). In this paper, we introduce a framework called Multi-LLM Collaborative Figure Caption Generation (MLBCAP) to address these challenges by leveraging specialized LLMs for distinct sub-tasks. Our approach unfolds in three key modules: (Quality Assessment) We utilize multimodal LLMs to assess the quality of training data, enabling the filtration of low-quality captions. (Diverse Caption Generation) We then employ a strategy of fine-tuning/prompting multiple LLMs on the captioning task to generate candidate captions. (Judgment) Lastly, we prompt a prominent LLM to select the highest quality caption from the candidates, followed by refining any remaining inaccuracies. Human evaluations demonstrate that informative captions produced by our approach rank better than human-written captions, highlighting its effectiveness. Our code is available at https://github.com/teamreboott/MLBCAP


Pseudo Outlier Exposure for Out-of-Distribution Detection using Pretrained Transformers

arXiv.org Artificial Intelligence

For real-world language applications, detecting an out-of-distribution (OOD) sample is helpful to alert users or reject such unreliable samples. However, modern over-parameterized language models often produce overconfident predictions for both in-distribution (ID) and OOD samples. In particular, language models suffer from OOD samples with a similar semantic representation to ID samples since these OOD samples lie near the ID manifold. A rejection network can be trained with ID and diverse outlier samples to detect test OOD samples, but explicitly collecting auxiliary OOD datasets brings an additional burden for data collection. In this paper, we propose a simple but effective method called Pseudo Outlier Exposure (POE) that constructs a surrogate OOD dataset by sequentially masking tokens related to ID classes. The surrogate OOD sample introduced by POE shows a similar representation to ID data, which is most effective in training a rejection network. Our method does not require any external OOD data and can be easily implemented within off-the-shelf Transformers. A comprehensive comparison with state-of-the-art algorithms demonstrates POE's competitiveness on several text classification benchmarks.


Nonparametric Decoding for Generative Retrieval

arXiv.org Artificial Intelligence

The generative retrieval model depends solely on the information encoded in its model parameters without external memory, its information capacity is limited and fixed. To overcome the limitation, we propose Nonparametric Decoding (Np Decoding) which can be applied to existing generative retrieval models. Np Decoding uses nonparametric contextualized vocab embeddings (external memory) rather than vanilla vocab embeddings as decoder vocab embeddings. By leveraging the contextualized vocab embeddings, the generative retrieval model is able to utilize both the parametric and nonparametric space. Evaluation over 9 datasets (8 single-hop and 1 multi-hop) in the document retrieval task shows that applying Np Decoding to generative retrieval models significantly improves the performance. We also show that Np Decoding is data- and parameter-efficient, and shows high performance in the zero-shot setting.


DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical Coherence Tomography Angiography Images

arXiv.org Artificial Intelligence

Computer-assisted automatic analysis of diabetic retinopathy (DR) is of great importance in reducing the risks of vision loss and even blindness. Ultra-wide optical coherence tomography angiography (UW-OCTA) is a non-invasive and safe imaging modality in DR diagnosis system, but there is a lack of publicly available benchmarks for model development and evaluation. To promote further research and scientific benchmarking for diabetic retinopathy analysis using UW-OCTA images, we organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading. The scientific community responded positively to the challenge, with 11, 12, and 13 teams from geographically diverse institutes submitting different solutions in these three tasks, respectively. This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge. The obtained results from top algorithms indicate the importance of data augmentation, model architecture and ensemble of networks in improving the performance of deep learning models. These findings have the potential to enable new developments in diabetic retinopathy analysis. The challenge remains open for post-challenge registrations and submissions for benchmarking future methodology developments.


Bag of Tricks for In-Distribution Calibration of Pretrained Transformers

arXiv.org Artificial Intelligence

While pre-trained language models (PLMs) have become a de-facto standard promoting the accuracy of text classification tasks, recent studies find that PLMs often predict over-confidently. Although various calibration methods have been proposed, such as ensemble learning and data augmentation, most of the methods have been verified in computer vision benchmarks rather than in PLM-based text classification tasks. In this paper, we present an empirical study on confidence calibration for PLMs, addressing three categories, including confidence penalty losses, data augmentations, and ensemble methods. We find that the ensemble model overfitted to the training set shows sub-par calibration performance and also observe that PLMs trained with confidence penalty loss have a trade-off between calibration and accuracy. Building on these observations, we propose the Calibrated PLM (CALL), a combination of calibration techniques. The CALL complements the drawbacks that may occur when utilizing a calibration method individually and boosts both classification and calibration accuracy. Design choices in CALL's training procedures are extensively studied, and we provide a detailed analysis of how calibration techniques affect the calibration performance of PLMs.


Key Feature Replacement of In-Distribution Samples for Out-of-Distribution Detection

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) detection can be used in deep learning-based applications to reject outlier samples from being unreliably classified by deep neural networks. Learning to classify between OOD and in-distribution samples is difficult because data comprising the former is extremely diverse. It has been observed that an auxiliary OOD dataset is most effective in training a "rejection" network when its samples are semantically similar to in-distribution images. We first deduce that OOD images are perceived by a deep neural network to be semantically similar to in-distribution samples when they share a common background, as deep networks are observed to incorrectly classify such images with high confidence. We then propose a simple yet effective Key In-distribution feature Replacement BY inpainting (KIRBY) procedure that constructs a surrogate OOD dataset by replacing class-discriminative features of in-distribution samples with marginal background features. The procedure can be implemented using off-the-shelf vision algorithms, where each step within the algorithm is shown to make the surrogate data increasingly similar to in-distribution data. Design choices in each step are studied extensively, and an exhaustive comparison with state-of-the-art algorithms demonstrates KIRBY's competitiveness on various benchmarks.


Reducing Streaming ASR Model Delay with Self Alignment

arXiv.org Artificial Intelligence

Reducing prediction delay for streaming end-to-end ASR models with minimal performance regression is a challenging problem. Constrained alignment is a well-known existing approach that penalizes predicted word boundaries using external low-latency acoustic models. On the contrary, recently proposed FastEmit is a sequence-level delay regularization scheme encouraging vocabulary tokens over blanks without any reference alignments. Although all these schemes are successful in reducing delay, ASR word error rate (WER) often severely degrades after applying these delay constraining schemes. In this paper, we propose a novel delay constraining method, named self alignment. Self alignment does not require external alignment models. Instead, it utilizes Viterbi forced-alignments from the trained model to find the lower latency alignment direction. From LibriSpeech evaluation, self alignment outperformed existing schemes: 25% and 56% less delay compared to FastEmit and constrained alignment at the similar word error rate. For Voice Search evaluation,12% and 25% delay reductions were achieved compared to FastEmit and constrained alignment with more than 2% WER improvements.


Deep learning-based citation recommendation system for patents

arXiv.org Artificial Intelligence

In this study, we address the challenges in developing a deep learning-based automatic patent citation recommendation system. Although deep learning-based recommendation systems have exhibited outstanding performance in various domains (such as movies, products, and paper citations), their validity in patent citations has not been investigated, owing to the lack of a freely available high-quality dataset and relevant benchmark model. To solve these problems, we present a novel dataset called PatentNet that includes textual information and metadata for approximately 110,000 patents from the Google Big Query service. Further, we propose strong benchmark models considering the similarity of textual information and metadata (such as cooperative patent classification code). Compared with existing recommendation methods, the proposed benchmark method achieved a mean reciprocal rank of 0.2377 on the test set, whereas the existing state-of-the-art recommendation method achieved 0.2073.


End-to-End Multi-Task Denoising for joint SDR and PESQ Optimization

arXiv.org Machine Learning

Supervised learning based on a deep neural network recently has achieved substantial improvement on speech enhancement. Denoising networks learn mapping from noisy speech to clean one directly, or to a spectrum mask which is the ratio between clean and noisy spectra. In either case, the network is optimized by minimizing mean square error (MSE) between ground-truth labels and time-domain or spectrum output. However, existing schemes have either of two critical issues: spectrum and metric mismatches. The spectrum mismatch is a well known issue that any spectrum modification after short-time Fourier transform (STFT), in general, cannot be fully recovered after inverse short-time Fourier transform (ISTFT). The metric mismatch is that a conventional MSE metric is sub-optimal to maximize our target metrics, signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ). This paper presents a new end-to-end denoising framework with the goal of joint SDR and PESQ optimization. First, the network optimization is performed on the time-domain signals after ISTFT to avoid spectrum mismatch. Second, two loss functions which have improved correlations with SDR and PESQ metrics are proposed to minimize metric mismatch. The experimental result showed that the proposed denoising scheme significantly improved both SDR and PESQ performance over the existing methods.


Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition

arXiv.org Artificial Intelligence

In this paper, a novel architecture for a deep recurrent neural network, residual LSTM is introduced. A plain LSTM has an internal memory cell that can learn long term dependencies of sequential data. It also provides a temporal shortcut path to avoid vanishing or exploding gradients in the temporal domain. The residual LSTM provides an additional spatial shortcut path from lower layers for efficient training of deep networks with multiple LSTM layers. Compared with the previous work, highway LSTM, residual LSTM separates a spatial shortcut path with temporal one by using output layers, which can help to avoid a conflict between spatial and temporal-domain gradient flows. Furthermore, residual LSTM reuses the output projection matrix and the output gate of LSTM to control the spatial information flow instead of additional gate networks, which effectively reduces more than 10% of network parameters. An experiment for distant speech recognition on the AMI SDM corpus shows that 10-layer plain and highway LSTM networks presented 13.7% and 6.2% increase in WER over 3-layer aselines, respectively. On the contrary, 10-layer residual LSTM networks provided the lowest WER 41.0%, which corresponds to 3.3% and 2.8% WER reduction over plain and highway LSTM networks, respectively.