Kim, Gunhee
How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects
Lee, Wonkwang, Jeong, Jongwon, Moon, Taehong, Kim, Hyeon-Jong, Kim, Jaehyeon, Kim, Gunhee, Lee, Byeong-Uk
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available on this link: t2m4lvo.github.io
Distilling Reinforcement Learning Algorithms for In-Context Model-Based Planning
Son, Jaehyeon, Lee, Soochan, Kim, Gunhee
Recent studies have shown that Transformers can perform in-context reinforcement learning (RL) by imitating existing RL algorithms, enabling sample-efficient adaptation to unseen tasks without parameter updates. However, these models also inherit the suboptimal behaviors of the RL algorithms they imitate. This issue primarily arises due to the gradual update rule employed by those algorithms. Model-based planning offers a promising solution to this limitation by allowing the models to simulate potential outcomes before taking action, providing an additional mechanism to deviate from the suboptimal behavior. Rather than learning a separate dynamics model, we propose Distillation for In-Context Planning (DICP), an in-context model-based RL framework where Transformers simultaneously learn environment dynamics and improve policy in-context. We evaluate DICP across a range of discrete and continuous environments, including Darkroom variants and Meta-World. Our results show that DICP achieves state-of-the-art performance while requiring significantly fewer environment interactions than baselines, which include both model-free counterparts and existing meta-RL methods. Since the introduction of Transformers (V aswani et al., 2017), their versatility in handling diverse tasks has been widely recognized across various domains (Brown et al., 2020; Dosovitskiy et al., 2021; Bubeck et al., 2023). A key aspect of their success is in-context learning (Brown et al., 2020), which enables models to acquire knowledge rapidly without explicit parameter updates through gradient descent. Recently, this capability has been explored in reinforcement learning (RL) (Chen et al., 2021; Schulman et al., 2017; Lee et al., 2022; Reed et al., 2022), where acquiring skills in a sample-efficient manner is crucial. This line of research naturally extends to meta-RL, which focuses on leveraging prior knowledge to quickly adapt to novel tasks. In this context, Laskin et al. (2023) introduce Algorithm Distillation (AD), an in-context RL approach where Transformers sequentially model the entire learning histories of a specific RL algorithm across various tasks. The goal is for the models to replicate the exploration-exploitation behaviors of the source RL algorithm, enabling them to tackle novel tasks purely in-context.
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
Kim, Chris Dongjoo, Moon, Sangwoo, Moon, Jihwan, Woo, Dongyeon, Kim, Gunhee
As with many other problems, real-world regression is plagued by the presence of noisy labels, an inevitable issue that demands our attention. Fortunately, much real-world data often exhibits an intrinsic property of continuously ordered correlations between labels and features, where data points with similar labels are also represented with closely related features. In response, we propose a novel approach named ConFrag, where we collectively model the regression data by transforming them into disjoint yet contrasting fragmentation pairs. This enables the training of more distinctive representations, enhancing the ability to select clean samples. Our ConFrag framework leverages a mixture of neighboring fragments to discern noisy labels through neighborhood agreement among expert feature extractors. We extensively perform experiments on six newly curated benchmark datasets of diverse domains, including age prediction, price prediction, and music production year estimation. We also introduce a metric called Error Residual Ratio (ERR) to better account for varying degrees of label noise. Our approach consistently outperforms fourteen state-of-the-art baselines, being robust against symmetric and random Gaussian label noise.
Is a Peeled Apple Still Red? Evaluating LLMs' Ability for Conceptual Combination with Property Type
Song, Seokwon, Lee, Taehyun, Ahn, Jaewoo, Sung, Jae Hyuk, Kim, Gunhee
Conceptual combination is a cognitive process that merges basic concepts, enabling the creation of complex expressions. During this process, the properties of combination (e.g., the whiteness of a peeled apple) can be inherited from basic concepts, newly emerge, or be canceled. However, previous studies have evaluated a limited set of properties and have not examined the generative process. To address this gap, we introduce the Conceptual Combination with Property Type dataset (CCPT), which consists of 12.3K annotated triplets of noun phrases, properties, and property types. Using CCPT, we establish three types of tasks to evaluate LLMs for conceptual combination thoroughly. Our key findings are threefold: (1) Our automatic metric grading property emergence and cancellation closely corresponds with human judgments. (2) LLMs, including OpenAI's o1, struggle to generate noun phrases which possess given emergent properties. (3) Our proposed method, inspired by cognitive psychology model that explains how relationships between concepts are formed, improves performances in all generative tasks. The dataset and experimental code are available at https://github.com/seokwon99/CCPT.git.
DynamicER: Resolving Emerging Mentions to Dynamic Entities for RAG
Kim, Jinyoung, Ko, Dayoon, Kim, Gunhee
In the rapidly evolving landscape of language, resolving new linguistic expressions in continuously updating knowledge bases remains a formidable challenge. This challenge becomes critical in retrieval-augmented generation (RAG) with knowledge bases, as emerging expressions hinder the retrieval of relevant documents, leading to generator hallucinations. To address this issue, we introduce a novel task aimed at resolving emerging mentions to dynamic entities and present DynamicER benchmark. Our benchmark includes dynamic entity mention resolution and entity-centric knowledge-intensive QA task, evaluating entity linking and RAG model's adaptability to new expressions, respectively. We discovered that current entity linking models struggle to link these new expressions to entities. Therefore, we propose a temporal segmented clustering method with continual adaptation, effectively managing the temporal dynamics of evolving entities and emerging mentions. Extensive experiments demonstrate that our method outperforms existing baselines, enhancing RAG model performance on QA task with resolved mentions.
Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
Zadeh, Fatemeh Pesaran, Kim, Juyeon, Kim, Jin-Hwa, Kim, Gunhee
Large language models (LLMs) have demonstrated strong capabilities across various language tasks, notably through instruction-tuning methods. However, LLMs face challenges in visualizing complex, real-world data through charts and plots. Firstly, existing datasets rarely cover a full range of chart types, such as 3D, volumetric, and gridded charts. Secondly, supervised fine-tuning methods do not fully leverage the intricate relationships within rich datasets, including text, code, and figures. To address these challenges, we propose a hierarchical pipeline and a new dataset for chart generation. Our dataset, Text2Chart31, includes 31 unique plot types referring to the Matplotlib library, with 11.1K tuples of descriptions, code, data tables, and plots. Moreover, we introduce a reinforcement learning-based instruction tuning technique for chart generation tasks without requiring human feedback. Our experiments show that this approach significantly enhances the model performance, enabling smaller models to outperform larger open-source models and be comparable to state-of-the-art proprietary models in data visualization tasks. We make the code and dataset available at https://github.com/fatemehpesaran310/Text2Chart31.
GrowOVER: How Can LLMs Adapt to Growing Real-World Knowledge?
Ko, Dayoon, Kim, Jinyoung, Choi, Hahyeon, Kim, Gunhee
In the real world, knowledge is constantly evolving, which can render existing knowledge-based datasets outdated. This unreliability highlights the critical need for continuous updates to ensure both accuracy and relevance in knowledge-intensive tasks. To address this, we propose GrowOVER-QA and GrowOVER-Dialogue, dynamic open-domain QA and dialogue benchmarks that undergo a continuous cycle of updates, keeping pace with the rapid evolution of knowledge. Our research indicates that retrieval-augmented language models (RaLMs) struggle with knowledge that has not been trained on or recently updated. Consequently, we introduce a novel retrieval-interactive language model framework, where the language model evaluates and reflects on its answers for further re-retrieval. Our exhaustive experiments demonstrate that our training-free framework significantly improves upon existing methods, performing comparably to or even surpassing continuously trained language models.
Learning to Continually Learn with the Bayesian Principle
Lee, Soochan, Jeon, Hyeonseong, Son, Jaehyeon, Kim, Gunhee
In the present era of deep learning, continual learning research is mainly focused on mitigating forgetting when training a neural network with stochastic gradient descent on a non-stationary stream of data. On the other hand, in the more classical literature of statistical machine learning, many models have sequential Bayesian update rules that yield the same learning outcome as the batch training, i.e., they are completely immune to catastrophic forgetting. However, they are often overly simple to model complex real-world data. In this work, we adopt the meta-learning paradigm to combine the strong representational power of neural networks and simple statistical models' robustness to forgetting. In our novel meta-continual learning framework, continual learning takes place only in statistical models via ideal sequential Bayesian update rules, while neural networks are meta-learned to bridge the raw data and the statistical models. Since the neural networks remain fixed during continual learning, they are protected from catastrophic forgetting. This approach not only achieves significantly improved performance but also exhibits excellent scalability. Since our approach is domain-agnostic and model-agnostic, it can be applied to a wide range of problems and easily integrated with existing model architectures.
TimeChara: Evaluating Point-in-Time Character Hallucination of Role-Playing Large Language Models
Ahn, Jaewoo, Lee, Taehyun, Lim, Junyoung, Kim, Jin-Hwa, Yun, Sangdoo, Lee, Hwaran, Kim, Gunhee
While Large Language Models (LLMs) can serve as agents to simulate human behaviors (i.e., role-playing agents), we emphasize the importance of point-in-time role-playing. This situates characters at specific moments in the narrative progression for three main reasons: (i) enhancing users' narrative immersion, (ii) avoiding spoilers, and (iii) fostering engagement in fandom role-playing. To accurately represent characters at specific time points, agents must avoid character hallucination, where they display knowledge that contradicts their characters' identities and historical timelines. We introduce TimeChara, a new benchmark designed to evaluate point-in-time character hallucination in role-playing LLMs. Comprising 10,895 instances generated through an automated pipeline, this benchmark reveals significant hallucination issues in current state-of-the-art LLMs (e.g., GPT-4o). To counter this challenge, we propose Narrative-Experts, a method that decomposes the reasoning steps and utilizes narrative experts to reduce point-in-time character hallucinations effectively. Still, our findings with TimeChara highlight the ongoing challenges of point-in-time character hallucination, calling for further study.
Compositional Conservatism: A Transductive Approach in Offline Reinforcement Learning
Song, Yeda, Lee, Dongwook, Kim, Gunhee
Offline reinforcement learning (RL) is a compelling framework for learning optimal policies from past experiences without additional interaction with the environment. Nevertheless, offline RL inevitably faces the problem of distributional shifts, where the states and actions encountered during policy execution may not be in the training dataset distribution. A common solution involves incorporating conservatism into the policy or the value function to safeguard against uncertainties and unknowns. In this work, we focus on achieving the same objectives of conservatism but from a different perspective. We propose COmpositional COnservatism with Anchor-seeking (COCOA) for offline RL, an approach that pursues conservatism in a compositional manner on top of the transductive reparameterization (Netanyahu et al., 2023), which decomposes the input variable (the state in our case) into an anchor and its difference from the original input. Our COCOA seeks both in-distribution anchors and differences by utilizing the learned reverse dynamics model, encouraging conservatism in the compositional input space for the policy or value function. Such compositional conservatism is independent of and agnostic to the prevalent behavioral conservatism in offline RL. We apply COCOA to four state-of-the-art offline RL algorithms and evaluate them on the D4RL benchmark, where COCOA generally improves the performance of each algorithm. The code is available at https://github.com/runamu/compositional-conservatism.