Goto

Collaborating Authors

 Kennedy, Sean


Leveraging Multimodal-LLMs Assisted by Instance Segmentation for Intelligent Traffic Monitoring

arXiv.org Artificial Intelligence

A robust and efficient traffic monitoring system is essential for smart cities and Intelligent Transportation Systems (ITS), using sensors and cameras to track vehicle movements, optimize traffic flow, reduce congestion, enhance road safety, and enable real-time adaptive traffic control. Traffic monitoring models must comprehensively understand dynamic urban conditions and provide an intuitive user interface for effective management. This research leverages the LLaVA visual grounding multimodal large language model (LLM) for traffic monitoring tasks on the real-time Quanser Interactive Lab simulation platform, covering scenarios like intersections, congestion, and collisions. Cameras placed at multiple urban locations collect real-time images from the simulation, which are fed into the LLaVA model with queries for analysis. An instance segmentation model integrated into the cameras highlights key elements such as vehicles and pedestrians, enhancing training and throughput. The system achieves 84.3% accuracy in recognizing vehicle locations and 76.4% in determining steering direction, outperforming traditional models.


Overcoming Adversarial Attacks for Human-in-the-Loop Applications

arXiv.org Artificial Intelligence

Including human analysis has the potential to positively affect the robustness of Deep Neural Networks and is relatively unexplored in the Adversarial Machine Learning literature. Neural network visual explanation maps have been shown to be prone to adversarial attacks. Further research is needed in order to select robust visualizations of explanations for the image analyst to evaluate a given model. These factors greatly impact Human-In-The-Loop (HITL) evaluation tools due to their reliance on adversarial images, including explanation maps and measurements of robustness. We believe models of human visual attention may improve interpretability and robustness of human-machine imagery analysis systems. Our challenge remains, how can HITL evaluation be robust in this adversarial landscape?


Human-Centered Responsible Artificial Intelligence: Current & Future Trends

arXiv.org Artificial Intelligence

In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence. While different research communities may use different terminology to discuss similar topics, all of this work is ultimately aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI. In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends to advance this important area of research by fostering collaboration and sharing ideas.