Ke, Ruimin
Enhancing Disaster Resilience with UAV-Assisted Edge Computing: A Reinforcement Learning Approach to Managing Heterogeneous Edge Devices
Azfar, Talha, Huang, Kaicong, Ke, Ruimin
Edge sensing and computing is rapidly becoming part of intelligent infrastructure architecture leading to operational reliance on such systems in disaster or emergency situations. In such scenarios there is a high chance of power supply failure due to power grid issues, and communication system issues due to base stations losing power or being damaged by the elements, e.g., flooding, wildfires etc. Mobile edge computing in the form of unmanned aerial vehicles (UAVs) has been proposed to provide computation offloading from these devices to conserve their battery, while the use of UAVs as relay network nodes has also been investigated previously. This paper considers the use of UAVs with further constraints on power and connectivity to prolong the life of the network while also ensuring that the data is received from the edge nodes in a timely manner. Reinforcement learning is used to investigate numerous scenarios of various levels of power and communication failure. This approach is able to identify the device most likely to fail in a given scenario, thus providing priority guidance for maintenance personnel. The evacuations of a rural town and urban downtown area are also simulated to demonstrate the effectiveness of the approach at extending the life of the most critical edge devices.
Q-RESTORE: Quantum-Driven Framework for Resilient and Equitable Transportation Network Restoration
Udekwe, Daniel, Ke, Ruimin, Lu, Jiaqing, Guo, Qian-wen
Efficient and socially equitable restoration of transportation networks post disasters is crucial for community resilience and access to essential services. The ability to rapidly recover critical infrastructure can significantly mitigate the impacts of disasters, particularly in underserved communities where prolonged isolation exacerbates vulnerabilities. Traditional restoration methods prioritize functionality over computational efficiency and equity, leaving low-income communities at a disadvantage during recovery. To address this gap, this research introduces a novel framework that combines quantum computing technology with an equity-focused approach to network restoration. Optimization of road link recovery within budget constraints is achieved by leveraging D Wave's hybrid quantum solver, which targets the connectivity needs of low, average, and high income communities. This framework combines computational speed with equity, ensuring priority support for underserved populations. Findings demonstrate that this hybrid quantum solver achieves near instantaneous computation times of approximately 8.7 seconds across various budget scenarios, significantly outperforming the widely used genetic algorithm. It offers targeted restoration by first aiding low-income communities and expanding aid as budgets increase, aligning with equity goals. This work showcases quantum computing's potential in disaster recovery planning, providing a rapid and equitable solution that elevates urban resilience and social sustainability by aiding vulnerable populations in disasters.
Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement Learning
Azfar, Talha, Ke, Ruimin
Traffic simulations are commonly used to optimize traffic flow, with reinforcement learning (RL) showing promising potential for automated traffic signal control. Multi-agent reinforcement learning (MARL) is particularly effective for learning control strategies for traffic lights in a network using iterative simulations. However, existing methods often assume perfect vehicle detection, which overlooks real-world limitations related to infrastructure availability and sensor reliability. This study proposes a co-simulation framework integrating CARLA and SUMO, which combines high-fidelity 3D modeling with large-scale traffic flow simulation. Cameras mounted on traffic light poles within the CARLA environment use a YOLO-based computer vision system to detect and count vehicles, providing real-time traffic data as input for adaptive signal control in SUMO. MARL agents, trained with four different reward structures, leverage this visual feedback to optimize signal timings and improve network-wide traffic flow. Experiments in the test-bed demonstrate the effectiveness of the proposed MARL approach in enhancing traffic conditions using real-time camera-based detection. The framework also evaluates the robustness of MARL under faulty or sparse sensing and compares the performance of YOLOv5 and YOLOv8 for vehicle detection. Results show that while better accuracy improves performance, MARL agents can still achieve significant improvements with imperfect detection, demonstrating adaptability for real-world scenarios.
VCAT: Vulnerability-aware and Curiosity-driven Adversarial Training for Enhancing Autonomous Vehicle Robustness
Cai, Xuan, Cui, Zhiyong, Bai, Xuesong, Ke, Ruimin, Ma, Zhenshu, Yu, Haiyang, Ren, Yilong
Autonomous vehicles (AVs) face significant threats to their safe operation in complex traffic environments. Adversarial training has emerged as an effective method of enabling AVs to preemptively fortify their robustness against malicious attacks. Train an attacker using an adversarial policy, allowing the AV to learn robust driving through interaction with this attacker. However, adversarial policies in existing methodologies often get stuck in a loop of overexploiting established vulnerabilities, resulting in poor improvement for AVs. To overcome the limitations, we introduce a pioneering framework termed Vulnerability-aware and Curiosity-driven Adversarial Training (VCAT). Specifically, during the traffic vehicle attacker training phase, a surrogate network is employed to fit the value function of the AV victim, providing dense information about the victim's inherent vulnerabilities. Subsequently, random network distillation is used to characterize the novelty of the environment, constructing an intrinsic reward to guide the attacker in exploring unexplored territories. In the victim defense training phase, the AV is trained in critical scenarios in which the pretrained attacker is positioned around the victim to generate attack behaviors. Experimental results revealed that the training methodology provided by VCAT significantly improved the robust control capabilities of learning-based AVs, outperforming both conventional training modalities and alternative reinforcement learning counterparts, with a marked reduction in crash rates. The code is available at https://github.com/caixxuan/VCAT.
Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Forecasting Network-wide Traffic State with Missing Values
Cui, Zhiyong, Ke, Ruimin, Pu, Ziyuan, Wang, Yinhai
Short-term traffic forecasting based on deep learning methods, especially recurrent neural networks (RNN), has received much attention in recent years. However, the potential of RNN-based models in traffic forecasting has not yet been fully exploited in terms of the predictive power of spatial-temporal data and the capability of handling missing data. In this paper, we focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models. A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting. As a key component of the architecture, the bidirectional LSTM (BDLSM) is exploited to capture the forward and backward temporal dependencies in spatiotemporal data. To deal with missing values in spatial-temporal data, we also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction. The bidirectional version of LSTM-I is incorporated in the SBU-LSTM architecture. Two real-world network-wide traffic state datasets are used to conduct experiments and published to facilitate further traffic prediction research. The prediction performance of multiple types of multi-layer LSTM or BDLSTM models is evaluated. Experimental results indicate that the proposed SBU-LSTM architecture, especially the two-layer BDLSTM network, can achieve superior performance for the network-wide traffic prediction in both accuracy and robustness. Further, comprehensive comparison results show that the proposed data imputation mechanism in the RNN-based models can achieve outstanding prediction performance when the model's input data contains different patterns of missing values.
Two-Stream Multi-Channel Convolutional Neural Network (TM-CNN) for Multi-Lane Traffic Speed Prediction Considering Traffic Volume Impact
Ke, Ruimin, Li, Wan, Cui, Zhiyong, Wang, Yinhai
Traffic speed prediction is a critically important component of intelligent transportation systems (ITS). Recently, with the rapid development of deep learning and transportation data science, a growing body of new traffic speed prediction models have been designed, which achieved high accuracy and large-scale prediction. However, existing studies have two major limitations. First, they predict aggregated traffic speed rather than lane-level traffic speed; second, most studies ignore the impact of other traffic flow parameters in speed prediction. To address these issues, we propose a two-stream multi-channel convolutional neural network (TM-CNN) model for multi-lane traffic speed prediction considering traffic volume impact. In this model, we first introduce a new data conversion method that converts raw traffic speed data and volume data into spatial-temporal multi-channel matrices. Then we carefully design a two-stream deep neural network to effectively learn the features and correlations between individual lanes, in the spatial-temporal dimensions, and between speed and volume. Accordingly, a new loss function that considers the volume impact in speed prediction is developed. A case study using one-year data validates the TM-CNN model and demonstrates its superiority. This paper contributes to two research areas: (1) traffic speed prediction, and (2) multi-lane traffic flow study.
Safe, Efficient, and Comfortable Velocity Control based on Reinforcement Learning for Autonomous Driving
Zhu, Meixin, Wang, Yinhai, Hu, Jingyun, Wang, Xuesong, Ke, Ruimin
A model used for velocity control during car following was proposed based on deep reinforcement learning (RL). To fulfil the multi-objectives of car following, a reward function reflecting driving safety, efficiency, and comfort was constructed. With the reward function, the RL agent learns to control vehicle speed in a fashion that maximizes cumulative rewards, through trials and errors in the simulation environment. A total of 1,341 car-following events extracted from the Next Generation Simulation (NGSIM) dataset were used to train the model. Car-following behavior produced by the model were compared with that observed in the empirical NGSIM data, to demonstrate the model's ability to follow a lead vehicle safely, efficiently, and comfortably. Results show that the model demonstrates the capability of safe, efficient, and comfortable velocity control in that it 1) has small percentages (8\%) of dangerous minimum time to collision values (\textless\ 5s) than human drivers in the NGSIM data (35\%); 2) can maintain efficient and safe headways in the range of 1s to 2s; and 3) can follow the lead vehicle comfortably with smooth acceleration. The results indicate that reinforcement learning methods could contribute to the development of autonomous driving systems.
High-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
Cui, Zhiyong, Henrickson, Kristian, Ke, Ruimin, Wang, Yinhai
Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic network and forecast the network-wide traffic state. We define the high-order traffic graph convolution based on the physical network topology. The proposed framework employs L1-norms on the graph convolution weights and L2-norms on the graph convolution features to identify the most influential links in the traffic network. We propose a novel Real-Time Branching Learning (RTBL) algorithm for the HGC-LSTM framework to accelerate the training process for spatio-temporal data. Experiments show that our HGC-LSTM network is able to capture the complex spatio-temporal dependencies efficiently present in the traffic network and consistently outperforms state-of-the-art baseline methods on two heterogeneous real-world traffic datasets. The visualization of graph convolution weights shows that the proposed framework can accurately recognize the most influential roadway segments in real-world traffic networks.