Kaypak, Ali Umut
Safe Multi-Robotic Arm Interaction via 3D Convex Shapes
Kaypak, Ali Umut, Wei, Shiqing, Krishnamurthy, Prashanth, Khorrami, Farshad
Inter-robot collisions pose a significant safety risk when multiple robotic arms operate in close proximity. We present an online collision avoidance methodology leveraging 3D convex shape-based High-Order Control Barrier Functions (HOCBFs) to address this issue. While prior works focused on using Control Barrier Functions (CBFs) for human-robotic arm and single-arm collision avoidance, we explore the problem of collision avoidance between multiple robotic arms operating in a shared space. In our methodology, we utilize the proposed HOCBFs as centralized and decentralized safety filters. These safety filters are compatible with any nominal controller and ensure safety without significantly restricting the robots' workspace. A key challenge in implementing these filters is the computational overhead caused by the large number of safety constraints and the computation of a Hessian matrix per constraint. We address this challenge by employing numerical differentiation methods to approximate computationally intensive terms. The effectiveness of our method is demonstrated through extensive simulation studies and real-world experiments with Franka Research 3 robotic arms.
OrionNav: Online Planning for Robot Autonomy with Context-Aware LLM and Open-Vocabulary Semantic Scene Graphs
Devarakonda, Venkata Naren, Goswami, Raktim Gautam, Kaypak, Ali Umut, Patel, Naman, Khorrambakht, Rooholla, Krishnamurthy, Prashanth, Khorrami, Farshad
Enabling robots to autonomously navigate unknown, complex, dynamic environments and perform diverse tasks remains a fundamental challenge in developing robust autonomous physical agents. These agents must effectively perceive their surroundings while leveraging world knowledge for decision-making. Although recent approaches utilize vision-language and large language models for scene understanding and planning, they often rely on offline processing, offboard compute, make simplifying assumptions about the environment and perception, limiting real-world applicability. We present a novel framework for real-time onboard autonomous navigation in unknown environments that change over time by integrating multi-level abstraction in both perception and planning pipelines. Our system fuses data from multiple onboard sensors for localization and mapping and integrates it with open-vocabulary semantics to generate hierarchical scene graphs from continuously updated semantic object map. The LLM-based planner uses these graphs to create multi-step plans that guide low-level controllers in executing navigation tasks specified in natural language. The system's real-time operation enables the LLM to adjust its plans based on updates to the scene graph and task execution status, ensuring continuous adaptation to new situations or when the current plan cannot accomplish the task, a key advantage over static or rule-based systems. We demonstrate our system's efficacy on a quadruped navigating dynamic environments, showcasing its adaptability and robustness in diverse scenarios.
MultiTalk: Introspective and Extrospective Dialogue for Human-Environment-LLM Alignment
Devarakonda, Venkata Naren, Kaypak, Ali Umut, Yuan, Shuaihang, Krishnamurthy, Prashanth, Fang, Yi, Khorrami, Farshad
LLMs have shown promising results in task planning due to their strong natural language understanding and reasoning capabilities. However, issues such as hallucinations, ambiguities in human instructions, environmental constraints, and limitations in the executing agent's capabilities often lead to flawed or incomplete plans. This paper proposes MultiTalk, an LLM-based task planning methodology that addresses these issues through a framework of introspective and extrospective dialogue loops. This approach helps ground generated plans in the context of the environment and the agent's capabilities, while also resolving uncertainties and ambiguities in the given task. These loops are enabled by specialized systems designed to extract and predict task-specific states, and flag mismatches or misalignments among the human user, the LLM agent, and the environment. Effective feedback pathways between these systems and the LLM planner foster meaningful dialogue. The efficacy of this methodology is demonstrated through its application to robotic manipulation tasks. Experiments and ablations highlight the robustness and reliability of our method, and comparisons with baselines further illustrate the superiority of MultiTalk in task planning for embodied agents.
Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback
Bhat, Vineet, Kaypak, Ali Umut, Krishnamurthy, Prashanth, Karri, Ramesh, Khorrami, Farshad
Robotic planning algorithms direct agents to perform actions within diverse environments to accomplish a task. Large Language Models (LLMs) like PaLM 2, GPT-3.5, and GPT-4 have revolutionized this domain, using their embedded real-world knowledge to tackle complex tasks involving multiple agents and objects. This paper introduces an innovative planning algorithm that integrates LLMs into the robotics context, enhancing task-focused execution and success rates. Key to our algorithm is a closed-loop feedback which provides real-time environmental states and error messages, crucial for refining plans when discrepancies arise. The algorithm draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical fashion. Our method not only surpasses baselines within the VirtualHome Environment, registering a notable 35% average increase in task-oriented success rates, but achieves an impressive execution score of 85%, approaching the human-level benchmark of 94%. Moreover, effectiveness of the algorithm in real robot scenarios is shown using a realistic physics simulator and the Franka Research 3 Arm.