Kashyap, Satyananda
Modern Hopfield Networks meet Encoded Neural Representations -- Addressing Practical Considerations
Kashyap, Satyananda, D'Souza, Niharika S., Shi, Luyao, Wong, Ken C. L., Wang, Hongzhi, Syeda-Mahmood, Tanveer
Content-addressable memories such as Modern Hopfield Networks (MHN) have been studied as mathematical models of auto-association and storage/retrieval in the human declarative memory, yet their practical use for large-scale content storage faces challenges. Chief among them is the occurrence of meta-stable states, particularly when handling large amounts of high dimensional content. This paper introduces Hopfield Encoding Networks (HEN), a framework that integrates encoded neural representations into MHNs to improve pattern separability and reduce meta-stable states. We show that HEN can also be used for retrieval in the context of hetero association of images with natural language queries, thus removing the limitation of requiring access to partial content in the same domain. Experimental results demonstrate substantial reduction in meta-stable states and increased storage capacity while still enabling perfect recall of a significantly larger number of inputs advancing the practical utility of associative memory networks for real-world tasks.
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
Karargyris, Alexandros, Umeton, Renato, Sheller, Micah J., Aristizabal, Alejandro, George, Johnu, Bala, Srini, Beutel, Daniel J., Bittorf, Victor, Chaudhari, Akshay, Chowdhury, Alexander, Coleman, Cody, Desinghu, Bala, Diamos, Gregory, Dutta, Debo, Feddema, Diane, Fursin, Grigori, Guo, Junyi, Huang, Xinyuan, Kanter, David, Kashyap, Satyananda, Lane, Nicholas, Mallick, Indranil, Mascagni, Pietro, Mehta, Virendra, Natarajan, Vivek, Nikolov, Nikola, Padoy, Nicolas, Pekhimenko, Gennady, Reddi, Vijay Janapa, Reina, G Anthony, Ribalta, Pablo, Rosenthal, Jacob, Singh, Abhishek, Thiagarajan, Jayaraman J., Wuest, Anna, Xenochristou, Maria, Xu, Daguang, Yadav, Poonam, Rosenthal, Michael, Loda, Massimo, Johnson, Jason M., Mattson, Peter
Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform.
Chest ImaGenome Dataset for Clinical Reasoning
Wu, Joy T., Agu, Nkechinyere N., Lourentzou, Ismini, Sharma, Arjun, Paguio, Joseph A., Yao, Jasper S., Dee, Edward C., Mitchell, William, Kashyap, Satyananda, Giovannini, Andrea, Celi, Leo A., Moradi, Mehdi
Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findings. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global "weak" labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe $242,072$ images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) $1,256$ combinations of relation annotations between $29$ CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over $670,000$ localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from $500$ unique patients.
Looking in the Right place for Anomalies: Explainable AI through Automatic Location Learning
Kashyap, Satyananda, Karargyris, Alexandros, Wu, Joy, Gur, Yaniv, Sharma, Arjun, Wong, Ken C. L., Moradi, Mehdi, Syeda-Mahmood, Tanveer
Deep learning has now become the de facto approach to the recognition of anomalies in medical imaging. Their 'black box' way of classifying medical images into anomaly labels poses problems for their acceptance, particularly with clinicians. Current explainable AI methods offer justifications through visualizations such as heat maps but cannot guarantee that the network is focusing on the relevant image region fully containing the anomaly. In this paper, we develop an approach to explainable AI in which the anomaly is assured to be overlapping the expected location when present. This is made possible by automatically extracting location-specific labels from textual reports and learning the association of expected locations to labels using a hybrid combination of Bi-Directional Long Short-Term Memory Recurrent Neural Networks (Bi-LSTM) and DenseNet-121. Use of this expected location to bias the subsequent attention-guided inference network based on ResNet101 results in the isolation of the anomaly at the expected location when present. The method is evaluated on a large chest X-ray dataset.
Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation
Thiagarajan, Jayaraman J., Kashyap, Satyananda, Karagyris, Alexandros
--Weakly supervised instance labeling using only image-level labels, in lieu of expensive fine-grained pixel annotations, is crucial in several applications including medical image analysis. In contrast to conventional instance segmentation scenarios in computer vision, the problems that we consider are characterized by a small number of training images and non-local patterns that lead to the diagnosis. In this paper, we explore the use of multiple instance learning (MIL) to design an instance label generator under this weakly supervised setting. Motivated by the observation that an MIL model can handle bags of varying sizes, we propose to repurpose an MIL model originally trained for bag-level classification to produce reliable predictions for single instances, i.e., bags of size 1 . T o this end, we introduce a novel regularization strategy based on virtual adversarial training for improving MIL training, and subsequently develop a knowledge distillation technique for repurposing the trained MIL model. Using empirical studies on colon cancer and breast cancer detection from histopathological images, we show that the proposed approach produces high-quality instance-level prediction and significantly outperforms state-of-the MIL methods.