Goto

Collaborating Authors

 Karamouzas, Ioannis


A Study in Zucker: Insights on Interactions Between Humans and Small Service Robots

arXiv.org Artificial Intelligence

Despite recent advancements in human-robot interaction (HRI), there is still limited knowledge about how humans interact and behave in the presence of small service indoor robots and, subsequently, about the human-centered behavior of such robots. This also raises concerns about the applicability of current trajectory prediction methods to indoor HRI settings as well as the accuracy of existing crowd simulation models in shared environments. To address these issues, we introduce a new HRI dataset focusing on interactions between humans and small differential drive robots running different types of controllers. Our analysis shows that anticipatory and non-anticipatory robot controllers impose similar constraints to humans' safety and efficiency. Additionally, we found that current state-of-the-art models for human trajectory prediction can adequately extend to indoor HRI settings. Finally, we show that humans respond differently to small differential drives than to other humans when collisions are imminent, since interacting with small robots can only cause a finite level of social discomfort as compared to human-human interactions. Our dataset and related code and models are available at: https://motion-lab.github.io/ZuckerDataset.


AdaptNet: Policy Adaptation for Physics-Based Character Control

arXiv.org Artificial Intelligence

Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at https://motion-lab.github.io/AdaptNet.


Human-Inspired Multi-Agent Navigation using Knowledge Distillation

arXiv.org Artificial Intelligence

Despite significant advancements in the field of multi-agent navigation, agents still lack the sophistication and intelligence that humans exhibit in multi-agent settings. In this paper, we propose a framework for learning a human-like general collision avoidance policy for agent-agent interactions in fully decentralized, multi-agent environments. Our approach uses knowledge distillation with reinforcement learning to shape the reward function based on expert policies extracted from human trajectory demonstrations through behavior cloning. We show that agents trained with our approach can take human-like trajectories in collision avoidance and goal-directed steering tasks not provided by the demonstrations, outperforming the experts as well as learning-based agents trained without knowledge distillation.


Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction

arXiv.org Artificial Intelligence

Real-time, accurate prediction of human steering behaviors has wide applications, from developing intelligent traffic systems to deploying autonomous driving systems in both real and simulated worlds. In this paper, we present ContextVAE, a context-aware approach for multi-modal vehicle trajectory prediction. Built upon the backbone architecture of a timewise variational autoencoder, ContextVAE observation encoding employs a dual attention mechanism that accounts for the environmental context and the dynamic agents' states, in a unified way. By utilizing features extracted from semantic maps during agent state encoding, our approach takes into account both the social features exhibited by agents on the scene and the physical environment constraints to generate map-compliant and socially-aware trajectories. We perform extensive testing on the nuScenes prediction challenge, Lyft Level 5 dataset and Waymo Open Motion Dataset to show the effectiveness of our approach and its state-of-the-art performance. In all tested datasets, ContextVAE models are fast to train and provide high-quality multi-modal predictions in real-time. Our code is available at: https://github.com/xupei0610/ContextVAE.


Composite Motion Learning with Task Control

arXiv.org Artificial Intelligence

We present a deep learning method for composite and task-driven motion control for physically simulated characters. In contrast to existing data-driven approaches using reinforcement learning that imitate full-body motions, we learn decoupled motions for specific body parts from multiple reference motions simultaneously and directly by leveraging the use of multiple discriminators in a GAN-like setup. In this process, there is no need of any manual work to produce composite reference motions for learning. Instead, the control policy explores by itself how the composite motions can be combined automatically. We further account for multiple task-specific rewards and train a single, multi-objective control policy. To this end, we propose a novel framework for multi-objective learning that adaptively balances the learning of disparate motions from multiple sources and multiple goal-directed control objectives. In addition, as composite motions are typically augmentations of simpler behaviors, we introduce a sample-efficient method for training composite control policies in an incremental manner, where we reuse a pre-trained policy as the meta policy and train a cooperative policy that adapts the meta one for new composite tasks. We show the applicability of our approach on a variety of challenging multi-objective tasks involving both composite motion imitation and multiple goal-directed control.


Implicit Coordination in Crowded Multi-Agent Navigation

AAAI Conferences

In crowded multi-agent navigation environments, the motion of the agents is significantly constrained by the motion of the nearby agents. This makes planning paths very difficult and leads to inefficient global motion. To address this problem, we propose a new distributed approach to coordinate the motions of agents in crowded environments. With our approach, agents take into account the velocities and goals of their neighbors and optimize their motion accordingly and in real-time. We experimentally validate our coordination approach in a variety of scenarios and show that its performance scales to scenarios with hundreds of agents.