Kapur, Manu
MathTutorBench: A Benchmark for Measuring Open-ended Pedagogical Capabilities of LLM Tutors
Macina, Jakub, Daheim, Nico, Hakimi, Ido, Kapur, Manu, Gurevych, Iryna, Sachan, Mrinmaya
Evaluating the pedagogical capabilities of AI-based tutoring models is critical for making guided progress in the field. Yet, we lack a reliable, easy-to-use, and simple-to-run evaluation that reflects the pedagogical abilities of models. To fill this gap, we present MathTutorBench, an open-source benchmark for holistic tutoring model evaluation. MathTutorBench contains a collection of datasets and metrics that broadly cover tutor abilities as defined by learning sciences research in dialog-based teaching. To score the pedagogical quality of open-ended teacher responses, we train a reward model and show it can discriminate expert from novice teacher responses with high accuracy. We evaluate a wide set of closed- and open-weight models on MathTutorBench and find that subject expertise, indicated by solving ability, does not immediately translate to good teaching. Rather, pedagogy and subject expertise appear to form a trade-off that is navigated by the degree of tutoring specialization of the model. Furthermore, tutoring appears to become more challenging in longer dialogs, where simpler questioning strategies begin to fail. We release the benchmark, code, and leaderboard openly to enable rapid benchmarking of future models.
Towards the Pedagogical Steering of Large Language Models for Tutoring: A Case Study with Modeling Productive Failure
Puech, Romain, Macina, Jakub, Chatain, Julia, Sachan, Mrinmaya, Kapur, Manu
One-to-one tutoring is one of the most efficient methods of teaching. Following the rise in popularity of Large Language Models (LLMs), there have been efforts to use them to create conversational tutoring systems, which can make the benefits of one-to-one tutoring accessible to everyone. However, current LLMs are primarily trained to be helpful assistants and thus lack crucial pedagogical skills. For example, they often quickly reveal the solution to the student and fail to plan for a richer multi-turn pedagogical interaction. To use LLMs in pedagogical scenarios, they need to be steered towards using effective teaching strategies: a problem we introduce as Pedagogical Steering and believe to be crucial for the efficient use of LLMs as tutors. We address this problem by formalizing a concept of tutoring strategy, and introducing StratL, an algorithm to model a strategy and use prompting to steer the LLM to follow this strategy. As a case study, we create a prototype tutor for high school math following Productive Failure (PF), an advanced and effective learning design. To validate our approach in a real-world setting, we run a field study with 17 high school students in Singapore. We quantitatively show that StratL succeeds in steering the LLM to follow a Productive Failure tutoring strategy. We also thoroughly investigate the existence of spillover effects on desirable properties of the LLM, like its ability to generate human-like answers. Based on these results, we highlight the challenges in Pedagogical Steering and suggest opportunities for further improvements. We further encourage follow-up research by releasing a dataset of Productive Failure problems and the code of our prototype and algorithm.
Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors
Daheim, Nico, Macina, Jakub, Kapur, Manu, Gurevych, Iryna, Sachan, Mrinmaya
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all. A promising approach towards this means is to build dialog tutoring models that scaffold students' problem-solving. However, even though existing LLMs perform well in solving reasoning questions, they struggle to precisely detect student's errors and tailor their feedback to these errors. Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions and show how grounding to such verification improves the overall quality of tutor response generation. We collect a dataset of 1K stepwise math reasoning chains with the first error step annotated by teachers. We show empirically that finding the mistake in a student solution is challenging for current models. We propose and evaluate several verifiers for detecting these errors. Using both automatic and human evaluation we show that the student solution verifiers steer the generation model towards highly targeted responses to student errors which are more often correct with less hallucinations compared to existing baselines.
MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties Grounded in Math Reasoning Problems
Macina, Jakub, Daheim, Nico, Chowdhury, Sankalan Pal, Sinha, Tanmay, Kapur, Manu, Gurevych, Iryna, Sachan, Mrinmaya
While automatic dialogue tutors hold great potential in making education personalized and more accessible, research on such systems has been hampered by a lack of sufficiently large and high-quality datasets. Collecting such datasets remains challenging, as recording tutoring sessions raises privacy concerns and crowdsourcing leads to insufficient data quality. To address this, we propose a framework to generate such dialogues by pairing human teachers with a Large Language Model (LLM) prompted to represent common student errors. We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues grounded in multi-step math reasoning problems. While models like GPT-3 are good problem solvers, they fail at tutoring because they generate factually incorrect feedback or are prone to revealing solutions to students too early. To overcome this, we let teachers provide learning opportunities to students by guiding them using various scaffolding questions according to a taxonomy of teacher moves. We demonstrate MathDial and its extensive annotations can be used to finetune models to be more effective tutors (and not just solvers). We confirm this by automatic and human evaluation, notably in an interactive setting that measures the trade-off between student solving success and telling solutions. The dataset is released publicly.
Opportunities and Challenges in Neural Dialog Tutoring
Macina, Jakub, Daheim, Nico, Wang, Lingzhi, Sinha, Tanmay, Kapur, Manu, Gurevych, Iryna, Sachan, Mrinmaya
Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models (LLMs) and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings. We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios. Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is. To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work.
Automatic Generation of Socratic Subquestions for Teaching Math Word Problems
Shridhar, Kumar, Macina, Jakub, El-Assady, Mennatallah, Sinha, Tanmay, Kapur, Manu, Sachan, Mrinmaya
Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers. In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning. On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.