Kalinli, Ozlem
CJST: CTC Compressor based Joint Speech and Text Training for Decoder-Only ASR
Zhou, Wei, Jia, Junteng, Sari, Leda, Mahadeokar, Jay, Kalinli, Ozlem
CTC compressor can be an effective approach to integrate audio encoders to decoder-only models, which has gained growing interest for different speech applications. In this work, we propose a novel CTC compressor based joint speech and text training (CJST) framework for decoder-only ASR. CJST matches speech and text modalities from both directions by exploring a simple modality adaptor and several features of the CTC compressor, including sequence compression, on-the-fly forced peaky alignment and CTC class embeddings. Experimental results on the Librispeech and TED-LIUM2 corpora show that the proposed CJST achieves an effective text injection without the need of duration handling, leading to the best performance for both in-domain and cross-domain scenarios. We also provide a comprehensive study on CTC compressor, covering various compression modes, edge case handling and behavior under both clean and noisy data conditions, which reveals the most robust setting to use CTC compressor for decoder-only models.
Transducer-Llama: Integrating LLMs into Streamable Transducer-based Speech Recognition
Deng, Keqi, Guo, Jinxi, Ma, Yingyi, Moritz, Niko, Woodland, Philip C., Kalinli, Ozlem, Seltzer, Mike
While large language models (LLMs) have been applied to automatic speech recognition (ASR), the task of making the model streamable remains a challenge. This paper proposes a novel model architecture, Transducer-Llama, that integrates LLMs into a Factorized Transducer (FT) model, naturally enabling streaming capabilities. Furthermore, given that the large vocabulary of LLMs can cause data sparsity issue and increased training costs for spoken language systems, this paper introduces an efficient vocabulary adaptation technique to align LLMs with speech system vocabularies. The results show that directly optimizing the FT model with a strong pre-trained LLM-based predictor using the RNN-T loss yields some but limited improvements over a smaller pre-trained LM predictor. Therefore, this paper proposes a weak-to-strong LM swap strategy, using a weak LM predictor during RNN-T loss training and then replacing it with a strong LLM. After LM replacement, the minimum word error rate (MWER) loss is employed to finetune the integration of the LLM predictor with the Transducer-Llama model. Experiments on the LibriSpeech and large-scale multi-lingual LibriSpeech corpora show that the proposed streaming Transducer-Llama approach gave a 17% relative WER reduction (WERR) over a strong FT baseline and a 32% WERR over an RNN-T baseline.
Effective Text Adaptation for LLM-based ASR through Soft Prompt Fine-Tuning
Ma, Yingyi, Liu, Zhe, Kalinli, Ozlem
The advent of Large Language Models (LLM) has reformed the Automatic Speech Recognition (ASR). Prompting LLM with audio embeddings to generate transcriptions becomes the new state-of-the-art ASR. Despite LLMs being trained with an extensive amount of text corpora, high-quality domain-specific text data can still significantly enhance ASR performance on domain adaptation tasks. Although LLM-based ASR can naturally incorporate more text corpora by fine-tuning the LLM decoder, fine-tuning such ASR on text-only data without paired prompts may diminish the effectiveness of domain-specific knowledge. To mitigate this issue, we propose a two-step soft prompt fine-tuning strategy that enhances domain-specific text adaptation. Experimental results show that text adaptation with our proposed method achieved a relative up to 9% Word Error Rate (WER) reduction and up to 18% Entity Error Rate (EER) reduction on the target domain compared to the baseline ASR. Combining this with domain-specific Language Model (LM) fusion can further improve the EER by a relative 2-5%
Efficient Streaming LLM for Speech Recognition
Jia, Junteng, Keren, Gil, Zhou, Wei, Lakomkin, Egor, Zhang, Xiaohui, Wu, Chunyang, Seide, Frank, Mahadeokar, Jay, Kalinli, Ozlem
Recent works have shown that prompting large language models with audio encodings can unlock speech recognition capabilities. However, existing techniques do not scale efficiently, especially while handling long form streaming audio inputs -- not only do they extrapolate poorly beyond the audio length seen during training, but they are also computationally inefficient due to the quadratic cost of attention. In this work, we introduce SpeechLLM-XL, a linear scaling decoder-only model for streaming speech recognition. We process audios in configurable chunks using limited attention window for reduced computation, and the text tokens for each audio chunk are generated auto-regressively until an EOS is predicted. During training, the transcript is segmented into chunks, using a CTC forced alignment estimated from encoder output. SpeechLLM-XL with 1.28 seconds chunk size achieves 2.7%/6.7% WER on LibriSpeech test clean/other, and it shows no quality degradation on long form utterances 10x longer than the training utterances.
Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech
Kang, Wonjune, Jia, Junteng, Wu, Chunyang, Zhou, Wei, Lakomkin, Egor, Gaur, Yashesh, Sari, Leda, Kim, Suyoun, Li, Ke, Mahadeokar, Jay, Kalinli, Ozlem
As speech becomes an increasingly common modality for interacting with large language models (LLMs), it is becoming desirable to develop systems where LLMs can take into account users' emotions or speaking styles when providing their responses. In this work, we study the potential of an LLM to understand these aspects of speech without fine-tuning its weights. To do this, we utilize an end-to-end system with a speech encoder; the encoder is trained to produce token embeddings such that the LLM's response to an expressive speech prompt is aligned with its response to a semantically matching text prompt where the speaker's emotion has also been specified. We find that this training framework allows the encoder to generate tokens that capture both semantic and paralinguistic information in speech and effectively convey it to the LLM, even when the LLM remains completely frozen. We also explore training on additional emotion and style-related response alignment tasks, finding that they further increase the amount of paralinguistic information explicitly captured in the speech tokens. Experiments demonstrate that our system is able to produce higher quality and more empathetic responses to expressive speech prompts compared to several baselines.
Token-Weighted RNN-T for Learning from Flawed Data
Keren, Gil, Zhou, Wei, Kalinli, Ozlem
ASR models are commonly trained with the cross-entropy criterion to increase the probability of a target token sequence. While optimizing the probability of all tokens in the target sequence is sensible, one may want to de-emphasize tokens that reflect transcription errors. In this work, we propose a novel token-weighted RNN-T criterion that augments the RNN-T objective with token-specific weights. The new objective is used for mitigating accuracy loss from transcriptions errors in the training data, which naturally appear in two settings: pseudo-labeling and human annotation errors. Experiments results show that using our method for semi-supervised learning with pseudo-labels leads to a consistent accuracy improvement, up to 38% relative. We also analyze the accuracy degradation resulting from different levels of WER in the reference transcription, and show that token-weighted RNN-T is suitable for overcoming this degradation, recovering 64%-99% of the accuracy loss.
Effective internal language model training and fusion for factorized transducer model
Guo, Jinxi, Moritz, Niko, Ma, Yingyi, Seide, Frank, Wu, Chunyang, Mahadeokar, Jay, Kalinli, Ozlem, Fuegen, Christian, Seltzer, Mike
The internal language model (ILM) of the neural transducer has been widely studied. In most prior work, it is mainly used for estimating the ILM score and is subsequently subtracted during inference to facilitate improved integration with external language models. Recently, various of factorized transducer models have been proposed, which explicitly embrace a standalone internal language model for non-blank token prediction. However, even with the adoption of factorized transducer models, limited improvement has been observed compared to shallow fusion. In this paper, we propose a novel ILM training and decoding strategy for factorized transducer models, which effectively combines the blank, acoustic and ILM scores. Our experiments show a 17% relative improvement over the standard decoding method when utilizing a well-trained ILM and the proposed decoding strategy on LibriSpeech datasets. Furthermore, when compared to a strong RNN-T baseline enhanced with external LM fusion, the proposed model yields a 5.5% relative improvement on general-sets and an 8.9% WER reduction for rare words. The proposed model can achieve superior performance without relying on external language models, rendering it highly efficient for production use-cases. To further improve the performance, we propose a novel and memory-efficient ILM-fusion-aware minimum word error rate (MWER) training method which improves ILM integration significantly.
Dynamic ASR Pathways: An Adaptive Masking Approach Towards Efficient Pruning of A Multilingual ASR Model
Xie, Jiamin, Li, Ke, Guo, Jinxi, Tjandra, Andros, Shangguan, Yuan, Sari, Leda, Wu, Chunyang, Jia, Junteng, Mahadeokar, Jay, Kalinli, Ozlem
Neural network pruning offers an effective method for compressing a multilingual automatic speech recognition (ASR) model with minimal performance loss. However, it entails several rounds of pruning and re-training needed to be run for each language. In this work, we propose the use of an adaptive masking approach in two scenarios for pruning a multilingual ASR model efficiently, each resulting in sparse monolingual models or a sparse multilingual model (named as Dynamic ASR Pathways). Our approach dynamically adapts the sub-network, avoiding premature decisions about a fixed sub-network structure. We show that our approach outperforms existing pruning methods when targeting sparse monolingual models. Further, we illustrate that Dynamic ASR Pathways jointly discovers and trains better sub-networks (pathways) of a single multilingual model by adapting from different sub-network initializations, thereby reducing the need for language-specific pruning.
Recovering from Privacy-Preserving Masking with Large Language Models
Vats, Arpita, Liu, Zhe, Su, Peng, Paul, Debjyoti, Ma, Yingyi, Pang, Yutong, Ahmed, Zeeshan, Kalinli, Ozlem
Model adaptation is crucial to handle the discrepancy between proxy training data and actual users data received. To effectively perform adaptation, textual data of users is typically stored on servers or their local devices, where downstream natural language processing (NLP) models can be directly trained using such in-domain data. However, this might raise privacy and security concerns due to the extra risks of exposing user information to adversaries. Replacing identifying information in textual data with a generic marker has been recently explored. In this work, we leverage large language models (LLMs) to suggest substitutes of masked tokens and have their effectiveness evaluated on downstream language modeling tasks. Specifically, we propose multiple pre-trained and fine-tuned LLM-based approaches and perform empirical studies on various datasets for the comparison of these methods. Experimental results show that models trained on the obfuscation corpora are able to achieve comparable performance with the ones trained on the original data without privacy-preserving token masking.
TODM: Train Once Deploy Many Efficient Supernet-Based RNN-T Compression For On-device ASR Models
Shangguan, Yuan, Yang, Haichuan, Li, Danni, Wu, Chunyang, Fathullah, Yassir, Wang, Dilin, Dalmia, Ayushi, Krishnamoorthi, Raghuraman, Kalinli, Ozlem, Jia, Junteng, Mahadeokar, Jay, Lei, Xin, Seltzer, Mike, Chandra, Vikas
Automatic Speech Recognition (ASR) models need to be optimized for specific hardware before they can be deployed on devices. This can be done by tuning the model's hyperparameters or exploring variations in its architecture. Re-training and re-validating models after making these changes can be a resource-intensive task. This paper presents TODM (Train Once Deploy Many), a new approach to efficiently train many sizes of hardware-friendly on-device ASR models with comparable GPU-hours to that of a single training job. TODM leverages insights from prior work on Supernet, where Recurrent Neural Network Transducer (RNN-T) models share weights within a Supernet. It reduces layer sizes and widths of the Supernet to obtain subnetworks, making them smaller models suitable for all hardware types. We introduce a novel combination of three techniques to improve the outcomes of the TODM Supernet: adaptive dropouts, an in-place Alpha-divergence knowledge distillation, and the use of ScaledAdam optimizer. We validate our approach by comparing Supernet-trained versus individually tuned Multi-Head State Space Model (MH-SSM) RNN-T using LibriSpeech. Results demonstrate that our TODM Supernet either matches or surpasses the performance of manually tuned models by up to a relative of 3% better in word error rate (WER), while efficiently keeping the cost of training many models at a small constant.