Kalia, Apurva
JESTR: Joint Embedding Space Technique for Ranking Candidate Molecules for the Annotation of Untargeted Metabolomics Data
Kalia, Apurva, Krishnan, Dilip, Hassoun, Soha
Motivation: A major challenge in metabolomics is annotation: assigning molecular structures to mass spectral fragmentation patterns. Despite recent advances in molecule-to-spectra and in spectra-to-molecular fingerprint prediction (FP), annotation rates remain low. Results: We introduce in this paper a novel paradigm (JESTR) for annotation. Unlike prior approaches that explicitly construct molecular fingerprints or spectra, JESTR leverages the insight that molecules and their corresponding spectra are views of the same data and effectively embeds their representations in a joint space. Candidate structures are ranked based on cosine similarity between the embeddings of query spectrum and each candidate. We evaluate JESTR against mol-to-spec and spec-to-FP annotation tools on three datasets. On average, for rank@[1-5], JESTR outperforms other tools by 23.6%-71.6%. We further demonstrate the strong value of regularization with candidate molecules during training, boosting rank@1 performance by 11.4% and enhancing the model's ability to discern between target and candidate molecules. Through JESTR, we offer a novel promising avenue towards accurate annotation, therefore unlocking valuable insights into the metabolome.
MassSpecGym: A benchmark for the discovery and identification of molecules
Bushuiev, Roman, Bushuiev, Anton, de Jonge, Niek F., Young, Adamo, Kretschmer, Fleming, Samusevich, Raman, Heirman, Janne, Wang, Fei, Zhang, Luke, Dührkop, Kai, Ludwig, Marcus, Haupt, Nils A., Kalia, Apurva, Brungs, Corinna, Schmid, Robin, Greiner, Russell, Wang, Bo, Wishart, David S., Liu, Li-Ping, Rousu, Juho, Bittremieux, Wout, Rost, Hannes, Mak, Tytus D., Hassoun, Soha, Huber, Florian, van der Hooft, Justin J. J., Stravs, Michael A., Böcker, Sebastian, Sivic, Josef, Pluskal, Tomáš
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra and defines three MS/MS annotation challenges: \textit{de novo} molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community. MassSpecGym is publicly available at \url{https://github.com/pluskal-lab/MassSpecGym}.
CSI: Contrastive Data Stratification for Interaction Prediction and its Application to Compound-Protein Interaction Prediction
Kalia, Apurva, Krishnan, Dilip, Hassoun, Soha
Motivation: Accurately predicting the likelihood of interaction between two objects (compound-protein sequence, user-item, author-paper, etc.) is a fundamental problem in Computer Science. Current deep-learning models rely on learning accurate representations of the interacting objects. Importantly, relationships between the interacting objects, or features of the interaction, offer an opportunity to partition the data to create multi-views of the interacting objects. The resulting congruent and non-congruent views can then be exploited via contrastive learning techniques to learn enhanced representations of the objects. Results: We present a novel method, Contrastive Stratification for Interaction Prediction (CSI), to stratify (partition) a dataset in a manner that can be exploited via Contrastive Multiview Coding (CMC) to learn embeddings that maximize the mutual information across congruent data views. CSI assigns a key and multiple views to each data point, where data partitions under a particular key form congruent views of the data. We showcase the effectiveness of CSI by applying it to the compound-protein sequence interaction prediction problem, a pressing problem whose solution promises to expedite drug delivery (drugprotein interaction prediction), metabolic engineering and synthetic biology (compound-enzyme interaction prediction) applications. Comparing CSI with a baseline model that does not utilize data stratification and contrastive learning, and show gains in Average Precision ranging from 13.7% to 39% using compounds and sequences as keys across multiple drug-target and enzymatic datasets, and gains ranging from 16.9% to 63% using reaction features as keys across enzymatic datasets.