Kalantari, Arash
How Strong a Kick Should be to Topple Northeastern's Tumbling Robot?
Salagame, Adarsh, Bhattachan, Neha, Caetano, Andre, McCarthy, Ian, Noyes, Henry, Petersen, Brandon, Qiu, Alexander, Schroeter, Matthew, Smithwick, Nolan, Sroka, Konrad, Widjaja, Jason, Bohra, Yash, Venkatesh, Kaushik, Gangaraju, Kruthika, Ghanem, Paul, Mandralis, Ioannis, Sihite, Eric, Kalantari, Arash, Ramezani, Alireza
How Strong a Kick Should be to Topple Northeastern's Tumbling Robot? Abstract-- Rough terrain locomotion has remained one of the most challenging mobility questions. In 2022, NASA's Innovative Advanced Concepts (NIAC) Program invited US academic institutions to participate NASA's Breakthrough, Innovative & Game-changing (BIG) Idea competition by proposing novel mobility systems that can negotiate extremely rough terrain, lunar bumpy craters. In this competition, Northeastern University won NASA's top Artemis Award award by proposing an articulated robot tumbler called COBRA (Crater Observing Bio-inspired Rolling Articulator). This report briefly explains the underlying principles that made COBRA successful in competing with other concepts ranging from cable-driven to multilegged designs from six other participating US institutions.
Demonstrating Autonomous 3D Path Planning on a Novel Scalable UGV-UAV Morphing Robot
Sihite, Eric, Slezak, Filip, Mandralis, Ioannis, Salagame, Adarsh, Ramezani, Milad, Kalantari, Arash, Ramezani, Alireza, Gharib, Morteza
Abstract-- Some animals exhibit multi-modal locomotion capability to traverse a wide range of terrains and environments, such as amphibians that can swim and walk or birds that can fly and walk. This capability is extremely beneficial for expanding the animal's habitat range and they can choose the most energy efficient mode of locomotion in a given environment. The robotic biomimicry of this multi-modal locomotion capability can be very challenging but offer the same advantages. However, the expanded range of locomotion also increases the complexity of performing localization and path planning. In this work, we present our morphing multi-modal robot, which is capable of ground and aerial locomotion, and the implementation of readily available SLAM and path planning solutions to navigate a complex indoor environment.
NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge
Agha, Ali, Otsu, Kyohei, Morrell, Benjamin, Fan, David D., Thakker, Rohan, Santamaria-Navarro, Angel, Kim, Sung-Kyun, Bouman, Amanda, Lei, Xianmei, Edlund, Jeffrey, Ginting, Muhammad Fadhil, Ebadi, Kamak, Anderson, Matthew, Pailevanian, Torkom, Terry, Edward, Wolf, Michael, Tagliabue, Andrea, Vaquero, Tiago Stegun, Palieri, Matteo, Tepsuporn, Scott, Chang, Yun, Kalantari, Arash, Chavez, Fernando, Lopez, Brett, Funabiki, Nobuhiro, Miles, Gregory, Touma, Thomas, Buscicchio, Alessandro, Tordesillas, Jesus, Alatur, Nikhilesh, Nash, Jeremy, Walsh, William, Jung, Sunggoo, Lee, Hanseob, Kanellakis, Christoforos, Mayo, John, Harper, Scott, Kaufmann, Marcel, Dixit, Anushri, Correa, Gustavo, Lee, Carlyn, Gao, Jay, Merewether, Gene, Maldonado-Contreras, Jairo, Salhotra, Gautam, Da Silva, Maira Saboia, Ramtoula, Benjamin, Fakoorian, Seyed, Hatteland, Alexander, Kim, Taeyeon, Bartlett, Tara, Stephens, Alex, Kim, Leon, Bergh, Chuck, Heiden, Eric, Lew, Thomas, Cauligi, Abhishek, Heywood, Tristan, Kramer, Andrew, Leopold, Henry A., Choi, Chris, Daftry, Shreyansh, Toupet, Olivier, Wee, Inhwan, Thakur, Abhishek, Feras, Micah, Beltrame, Giovanni, Nikolakopoulos, George, Shim, David, Carlone, Luca, Burdick, Joel
This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved 2nd and 1st place, respectively. We also discuss CoSTAR's demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including: (i) geometric and semantic environment mapping; (ii) a multi-modal positioning system; (iii) traversability analysis and local planning; (iv) global motion planning and exploration behavior; (i) risk-aware mission planning; (vi) networking and decentralized reasoning; and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g. wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.