Goto

Collaborating Authors

 Kahl, Stefan


BirdSet: A Dataset and Benchmark for Classification in Avian Bioacoustics

arXiv.org Artificial Intelligence

Deep learning (DL) models have emerged as a powerful tool in avian bioacoustics to assess environmental health. To maximize the potential of cost-effective and minimal-invasive passive acoustic monitoring (PAM), DL models must analyze bird vocalizations across a wide range of species and environmental conditions. However, data fragmentation challenges a comprehensive evaluation of generalization performance. Therefore, we introduce the BirdSet dataset, comprising approximately 520,000 global bird recordings for training and over 400 hours of PAM recordings for testing. Our benchmark offers baselines for several DL models to enhance comparability and consolidate research across studies, along with code implementations that include comprehensive training and evaluation protocols.


BIRB: A Generalization Benchmark for Information Retrieval in Bioacoustics

arXiv.org Artificial Intelligence

The ability for a machine learning model to cope with differences in training and deployment conditions--e.g. in the presence of distribution shift or the generalization to new classes altogether--is crucial for real-world use cases. However, most empirical work in this area has focused on the image domain with artificial benchmarks constructed to measure individual aspects of generalization. We present BIRB, a complex benchmark centered on the retrieval of bird vocalizations from passively-recorded datasets given focal recordings from a large citizen science corpus available for training. We propose a baseline system for this collection of tasks using representation learning and a nearest-centroid search. Our thorough empirical evaluation and analysis surfaces open research directions, suggesting that BIRB fills the need for a more realistic and complex benchmark to drive progress on robustness to distribution shifts and generalization of ML models.