Goto

Collaborating Authors

 Külz, Jonathan


Holistic Construction Automation with Modular Robots: From High-Level Task Specification to Execution

arXiv.org Artificial Intelligence

In situ robotic automation in construction is challenging due to constantly changing environments, a shortage of robotic experts, and a lack of standardized frameworks bridging robotics and construction practices. This work proposes a holistic framework for construction task specification, optimization of robot morphology, and mission execution using a mobile modular reconfigurable robot. Users can specify and monitor the desired robot behavior through a graphical interface. Our framework identifies an optimized robot morphology and enables automatic real-world execution by integrating Building Information Modelling (BIM). By leveraging modular robot components, we ensure seamless and fast adaption to the specific demands of the construction task. Experimental validation demonstrates that our approach robustly enables the autonomous execution of robotic drilling.


Automatic Geometric Decomposition for Analytical Inverse Kinematics

arXiv.org Artificial Intelligence

Calculating the inverse kinematics (IK) is fundamental for motion planning in robotics. Compared to numerical or learning-based approaches, analytical IK provides higher efficiency and accuracy. However, existing analytical approaches require manual intervention, are ill-conditioned, or rely on time-consuming symbolic manipulation. In this paper, we propose a fast and stable method that enables automatic online derivation and computation of analytical inverse kinematics. Our approach is based on remodeling the kinematic chain of a manipulator to automatically decompose its IK into pre-solved geometric subproblems. We exploit intersecting and parallel joint axes to assign a given manipulator to a certain kinematic class and the corresponding subproblem decomposition. In numerical experiments, we demonstrate that our decomposition is orders of magnitudes faster in deriving the IK than existing tools that employ symbolic manipulation. Following this one-time derivation, our method matches and even surpasses baselines, such as IKFast, in terms of speed and accuracy during the online computation of explicit IK solutions. Finally, we provide a C++ toolbox with Python wrappers that, for the first time, enables plug-and-play analytical IK within less than a millisecond.


CoBRA: A Composable Benchmark for Robotics Applications

arXiv.org Artificial Intelligence

Today, selecting an optimal robot, its base pose, and trajectory for a given task is currently mainly done by human expertise or trial and error. To evaluate automatic approaches to this combined optimization problem, we introduce a benchmark suite encompassing a unified format for robots, environments, and task descriptions. Our benchmark suite is especially useful for modular robots, where the multitude of robots that can be assembled creates a host of additional parameters to optimize. We include tasks such as machine tending and welding in completely synthetic environments and 3D scans of real-world machine shops. The benchmark suite defines these optimization problems and facilitates the comparison of solution algorithms. All benchmarks are accessible through cobra.cps.cit.tum.de, a platform to conveniently share, reference, and compare tasks, robot models, and solutions.


Timor Python: A Toolbox for Industrial Modular Robotics

arXiv.org Artificial Intelligence

Modular Reconfigurable Robots (MRRs) represent an exciting path forward for industrial robotics, opening up new possibilities for robot design. Compared to monolithic manipulators, they promise greater flexibility, improved maintainability, and cost-efficiency. However, there is no tool or standardized way to model and simulate assemblies of modules in the same way it has been done for robotic manipulators for decades. We introduce the Toolbox for Industrial Modular Robotics (Timor), a Python toolbox to bridge this gap and integrate modular robotics into existing simulation and optimization pipelines. Our open-source library offers model generation and task-based configuration optimization for MRRs. It can easily be integrated with existing simulation tools - not least by offering URDF export of arbitrary modular robot assemblies. Moreover, our experimental study demonstrates the effectiveness of Timor as a tool for designing modular robots optimized for specific use cases.


Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm Approach

arXiv.org Artificial Intelligence

Industrial robots are designed as general-purpose hardware, which limits their ability to adapt to changing task requirements or environments. Modular robots, on the other hand, offer flexibility and can be easily customized to suit diverse needs. The morphology, i.e., the form and structure of a robot, significantly impacts the primary performance metrics acquisition cost, cycle time, and energy efficiency. However, identifying an optimal module composition for a specific task remains an open problem, presenting a substantial hurdle in developing task-tailored modular robots. Previous approaches either lack adequate exploration of the design space or the possibility to adapt to complex tasks. We propose combining a genetic algorithm with a lexicographic evaluation of solution candidates to overcome this problem and navigate search spaces exceeding those in prior work by magnitudes in the number of possible compositions. We demonstrate that our approach outperforms a state-of-the-art baseline and is able to synthesize modular robots for industrial tasks in cluttered environments.