Goto

Collaborating Authors

 Juuti, Anne


Nonparametric modeling of the composite effect of multiple nutrients on blood glucose dynamics

arXiv.org Machine Learning

In biomedical applications it is often necessary to estimate a physiological response to a treatment consisting of multiple components, and learn the separate effects of the components in addition to the joint effect. Here, we extend existing probabilistic nonparametric approaches to explicitly address this problem. We also develop a new convolution-based model for composite treatment-response curves that is more biologically interpretable. We validate our models by estimating the impact of carbohydrate and fat in meals on blood glucose. By differentiating treatment components, incorporating their dosages, and sharing statistical information across patients via a hierarchical multi-output Gaussian process, our method improves prediction accuracy over existing approaches, and allows us to interpret the different effects of carbohydrates and fat on the overall glucose response.


Causal Modeling of Policy Interventions From Sequences of Treatments and Outcomes

arXiv.org Artificial Intelligence

A treatment policy defines when and what treatments are applied to affect some outcome of interest. Data-driven decision-making requires the ability to predict what happens if a policy is changed. Existing methods that predict how the outcome evolves under different scenarios assume that the tentative sequences of future treatments are fixed in advance, while in practice the treatments are determined stochastically by a policy and may depend, for example, on the efficiency of previous treatments. Therefore, the current methods are not applicable if the treatment policy is unknown or a counterfactual analysis is needed. To handle these limitations, we model the treatments and outcomes jointly in continuous time, by combining Gaussian processes and point processes. Our model enables the estimation of a treatment policy from observational sequences of treatments and outcomes, and it can predict the interventional and counterfactual progression of the outcome after an intervention on the treatment policy (in contrast with the causal effect of a single treatment). We show with real-world and semi-synthetic data on blood glucose progression that our method can answer causal queries more accurately than existing alternatives.


Temporal Causal Mediation through a Point Process: Direct and Indirect Effects of Healthcare Interventions

arXiv.org Artificial Intelligence

Deciding on an appropriate intervention requires a causal model of a treatment, the outcome, and potential mediators. Causal mediation analysis lets us distinguish between direct and indirect effects of the intervention, but has mostly been studied in a static setting. In healthcare, data come in the form of complex, irregularly sampled time-series, with dynamic interdependencies between a treatment, outcomes, and mediators across time. Existing approaches to dynamic causal mediation analysis are limited to regular measurement intervals, simple parametric models, and disregard long-range mediator--outcome interactions. To address these limitations, we propose a non-parametric mediator--outcome model where the mediator is assumed to be a temporal point process that interacts with the outcome process. With this model, we estimate the direct and indirect effects of an external intervention on the outcome, showing how each of these affects the whole future trajectory. We demonstrate on semi-synthetic data that our method can accurately estimate direct and indirect effects. On real-world healthcare data, our model infers clinically meaningful direct and indirect effect trajectories for blood glucose after a surgery.


Errors-in-variables Modeling of Personalized Treatment-Response Trajectories

arXiv.org Machine Learning

Estimating the effect of a treatment on a given outcome, conditioned on a vector of covariates, is central in many applications. However, learning the impact of a treatment on a continuous temporal response, when the covariates suffer extensively from measurement error and even the timing of the treatments is uncertain, has not been addressed. We introduce a novel data-driven method that can estimate treatment-response trajectories in this challenging scenario. We model personalized treatment-response curves as a combination of parametric response functions, hierarchically sharing information across individuals, and a sparse Gaussian process for the baseline trend. Importantly, our model considers measurement error not only in treatment covariates, but also in treatment times, a problem which arises in practice for example when treatment information is based on self-reporting. In a challenging and timely problem of estimating the impact of diet on continuous blood glucose measurements, our model leads to significant improvements in estimation accuracy and prediction.