Goto

Collaborating Authors

 Jubery, Talukder


AgriField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel

arXiv.org Artificial Intelligence

While 2D image datasets are abundant, they fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present AgriField3D (website), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset comprises over 1,000 high-quality point clouds collected using a Terrestrial Laser Scanner, complemented by procedural models that provide structured, parametric representations of maize plants. These procedural models, generated using Non-Uniform Rational B-Splines (NURBS) and optimized via a two-step process combining Particle Swarm Optimization (PSO) and differentiable programming, enable precise, scalable reconstructions of leaf surfaces and plant architectures. To enhance usability, we performed graph-based segmentation to isolate individual leaves and stalks, ensuring consistent labeling across all samples. We also conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset further includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled versions (100k, 50k, 10k points) optimized for various computational needs. By integrating point cloud data of field grown plants with high-fidelity procedural models and ensuring meticulous manual validation, AgriField3D provides a comprehensive foundation for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.


Procedural Generation of 3D Maize Plant Architecture from LIDAR Data

arXiv.org Artificial Intelligence

This study introduces a robust framework for generating procedural 3D models of maize (Zea mays) plants from LiDAR point cloud data, offering a scalable alternative to traditional field-based phenotyping. Our framework leverages Non-Uniform Rational B-Spline (NURBS) surfaces to model the leaves of maize plants, combining Particle Swarm Optimization (PSO) for an initial approximation of the surface and a differentiable programming framework for precise refinement of the surface to fit the point cloud data. In the first optimization phase, PSO generates an approximate NURBS surface by optimizing its control points, aligning the surface with the LiDAR data, and providing a reliable starting point for refinement. The second phase uses NURBS-Diff, a differentiable programming framework, to enhance the accuracy of the initial fit by refining the surface geometry and capturing intricate leaf details. Our results demonstrate that, while PSO establishes a robust initial fit, the integration of differentiable NURBS significantly improves the overall quality and fidelity of the reconstructed surface. This hierarchical optimization strategy enables accurate 3D reconstruction of maize leaves across diverse genotypes, facilitating the subsequent extraction of complex traits like phyllotaxy. We demonstrate our approach on diverse genotypes of field-grown maize plants. All our codes are open-source to democratize these phenotyping approaches.