Goto

Collaborating Authors

 Juarez, Marc


SoK: What Makes Private Learning Unfair?

arXiv.org Artificial Intelligence

Differential privacy has emerged as the most studied framework for privacy-preserving machine learning. However, recent studies show that enforcing differential privacy guarantees can not only significantly degrade the utility of the model, but also amplify existing disparities in its predictive performance across demographic groups. Although there is extensive research on the identification of factors that contribute to this phenomenon, we still lack a complete understanding of the mechanisms through which differential privacy exacerbates disparities. The literature on this problem is muddled by varying definitions of fairness, differential privacy mechanisms, and inconsistent experimental settings, often leading to seemingly contradictory results. This survey provides the first comprehensive overview of the factors that contribute to the disparate effect of training models with differential privacy guarantees. We discuss their impact and analyze their causal role in such a disparate effect. Our analysis is guided by a taxonomy that categorizes these factors by their position within the machine learning pipeline, allowing us to draw conclusions about their interaction and the feasibility of potential mitigation strategies. We find that factors related to the training dataset and the underlying distribution play a decisive role in the occurrence of disparate impact, highlighting the need for research on these factors to address the issue.


Towards Understanding the Interplay of Generative Artificial Intelligence and the Internet

arXiv.org Artificial Intelligence

The rapid adoption of generative Artificial Intelligence (AI) tools that can generate realistic images or text, such as DALL-E, MidJourney, or ChatGPT, have put the societal impacts of these technologies at the center of public debate. These tools are possible due to the massive amount of data (text and images) that is publicly available through the Internet. At the same time, these generative AI tools become content creators that are already contributing to the data that is available to train future models. Therefore, future versions of generative AI tools will be trained with a mix of human-created and AI-generated content, causing a potential feedback loop between generative AI and public data repositories. This interaction raises many questions: how will future versions of generative AI tools behave when trained on a mixture of real and AI generated data? Will they evolve and improve with the new data sets or on the contrary will they degrade? Will evolution introduce biases or reduce diversity in subsequent generations of generative AI tools? What are the societal implications of the possible degradation of these models? Can we mitigate the effects of this feedback loop? In this document, we explore the effect of this interaction and report some initial results using simple diffusion models trained with various image datasets. Our results show that the quality and diversity of the generated images can degrade over time suggesting that incorporating AI-created data can have undesired effects on future versions of generative models.