Joseph, Vinu
Understanding the Effect of the Long Tail on Neural Network Compression
Dam, Harvey, Joseph, Vinu, Bhaskara, Aditya, Gopalakrishnan, Ganesh, Muralidharan, Saurav, Garland, Michael
Network compression is now a mature sub-field of neural network research: over the last decade, significant progress has been made towards reducing the size of models and speeding up inference, while maintaining the classification accuracy. However, many works have observed that focusing on just the overall accuracy can be misguided. E.g., it has been shown that mismatches between the full and compressed models can be biased towards under-represented classes. This raises the important research question, can we achieve network compression while maintaining "semantic equivalence" with the original network? In this work, we study this question in the context of the "long tail" phenomenon in computer vision datasets observed by Feldman, et al. They argue that memorization of certain inputs (appropriately defined) is essential to achieving good generalization. As compression limits the capacity of a network (and hence also its ability to memorize), we study the question: are mismatches between the full and compressed models correlated with the memorized training data? We present positive evidence in this direction for image classification tasks, by considering different base architectures and compression schemes.
ArctyrEX : Accelerated Encrypted Execution of General-Purpose Applications
Gouert, Charles, Joseph, Vinu, Dalton, Steven, Augonnet, Cedric, Garland, Michael, Tsoutsos, Nektarios Georgios
Fully Homomorphic Encryption (FHE) is a cryptographic method that guarantees the privacy and security of user data during computation. FHE algorithms can perform unlimited arithmetic computations directly on encrypted data without decrypting it. Thus, even when processed by untrusted systems, confidential data is never exposed. In this work, we develop new techniques for accelerated encrypted execution and demonstrate the significant performance advantages of our approach. Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI) scheme, which is a current state-of-the-art method for evaluating arbitrary functions in the encrypted domain. CGGI represents a computation as a graph of homomorphic logic gates and each individual bit of the plaintext is transformed into a polynomial in the encrypted domain. Arithmetic on such data becomes very expensive: operations on bits become operations on entire polynomials. Therefore, evaluating even relatively simple nonlinear functions, such as a sigmoid, can take thousands of seconds on a single CPU thread. Using our novel framework for end-to-end accelerated encrypted execution called ArctyrEX, developers with no knowledge of complex FHE libraries can simply describe their computation as a C program that is evaluated over $40\times$ faster on an NVIDIA DGX A100 and $6\times$ faster with a single A100 relative to a 256-threaded CPU baseline.
Reliable Model Compression via Label-Preservation-Aware Loss Functions
Joseph, Vinu, Siddiqui, Shoaib Ahmed, Bhaskara, Aditya, Gopalakrishnan, Ganesh, Muralidharan, Saurav, Garland, Michael, Ahmed, Sheraz, Dengel, Andreas
Model compression is a ubiquitous tool that brings the power of modern deep learning to edge devices with power and latency constraints. The goal of model compression is to take a large reference neural network and output a smaller and less expensive compressed network that is functionally equivalent to the reference. Compression typically involves pruning and/or quantization, followed by re-training to maintain the reference accuracy. However, it has been observed that compression can lead to a considerable mismatch in the labels produced by the reference and the compressed models, resulting in bias and unreliability. To combat this, we present a framework that uses a teacher-student learning paradigm to better preserve labels. We investigate the role of additional terms to the loss function and show how to automatically tune the associated parameters. We demonstrate the effectiveness of our approach both quantitatively and qualitatively on multiple compression schemes and accuracy recovery algorithms using a set of 8 different real-world network architectures. We obtain a significant reduction of up to 4.1X in the number of mismatches between the compressed and reference models, and up to 5.7X in cases where the reference model makes the correct prediction.
Message Scheduling for Performant, Many-Core Belief Propagation
Van der Merwe, Mark, Joseph, Vinu, Gopalakrishnan, Ganesh
--Belief Propagation (BP) is a message-passing algorithm for approximate inference over Probabilistic Graphical Models (PGMs), finding many applications such as computer vision, error-correcting codes, and protein-folding. While general, the convergence and speed of the algorithm has limited its practical use on difficult inference problems. As an algorithm that is highly amenable to parallelization, many-core Graphical Processing Units (GPUs) could significantly improve BP performance. Improving BP through many-core systems is nontrivial: the scheduling of messages in the algorithm strongly affects performance. We present a study of message scheduling for BP on GPUs. We demonstrate that BP exhibits a tradeoff between speed and convergence based on parallelism and show that existing message schedulings are not able to utilize this tradeoff. T o this end, we present a novel randomized message scheduling approach, Randomized BP (RnBP), which outperforms existing methods on the GPU. I NTRODUCTION Probabilistic Graphical Models (PGMs) are powerful, general machine learning models that encode distributions over random variables. PGM Inference, in which we seek to compute some probabilistic beliefs within the system modeled by the PGM, is in general an intractable problem, leading to dependence on approximate algorithms. Belief Propagation (BP) is a widely employed approximate inference algorithms for PGMs [1].