Goto

Collaborating Authors

 Jonker, Catholijn M.


Introducing MeMo: A Multimodal Dataset for Memory Modelling in Multiparty Conversations

arXiv.org Artificial Intelligence

Conversational memory is the process by which humans encode, retain and retrieve verbal, non-verbal and contextual information from a conversation. Since human memory is selective, differing recollections of the same events can lead to misunderstandings and misalignments within a group. Yet, conversational facilitation systems, aimed at advancing the quality of group interactions, usually focus on tracking users' states within an individual session, ignoring what remains in each participant's memory after the interaction. Understanding conversational memory can be used as a source of information on the long-term development of social connections within a group. This paper introduces the MeMo corpus, the first conversational dataset annotated with participants' memory retention reports, aimed at facilitating computational modelling of human conversational memory. The MeMo corpus includes 31 hours of small-group discussions on Covid-19, repeated 3 times over the term of 2 weeks. It integrates validated behavioural and perceptual measures, audio, video, and multimodal annotations, offering a valuable resource for studying and modelling conversational memory and group dynamics. By introducing the MeMo corpus, analysing its validity, and demonstrating its usefulness for future research, this paper aims to pave the way for future research in conversational memory modelling for intelligent system development.


Towards General Negotiation Strategies with End-to-End Reinforcement Learning

arXiv.org Artificial Intelligence

The research field of automated negotiation has a long history of designing agents that can negotiate with other agents. Such negotiation strategies are traditionally based on manual design and heuristics. More recently, reinforcement learning approaches have also been used to train agents to negotiate. However, negotiation problems are diverse, causing observation and action dimensions to change, which cannot be handled by default linear policy networks. Previous work on this topic has circumvented this issue either by fixing the negotiation problem, causing policies to be non-transferable between negotiation problems or by abstracting the observations and actions into fixed-size representations, causing loss of information and expressiveness due to feature design. We developed an end-to-end reinforcement learning method for diverse negotiation problems by representing observations and actions as a graph and applying graph neural networks in the policy. With empirical evaluations, we show that our method is effective and that we can learn to negotiate with other agents on never-before-seen negotiation problems. Our result opens up new opportunities for reinforcement learning in negotiation agents.


A Hybrid Intelligence Method for Argument Mining

arXiv.org Artificial Intelligence

Large-scale survey tools enable the collection of citizen feedback in opinion corpora. Extracting the key arguments from a large and noisy set of opinions helps in understanding the opinions quickly and accurately. Fully automated methods can extract arguments but (1) require large labeled datasets that induce large annotation costs and (2) work well for known viewpoints, but not for novel points of view. We propose HyEnA, a hybrid (human + AI) method for extracting arguments from opinionated texts, combining the speed of automated processing with the understanding and reasoning capabilities of humans. We evaluate HyEnA on three citizen feedback corpora. We find that, on the one hand, HyEnA achieves higher coverage and precision than a state-of-the-art automated method when compared to a common set of diverse opinions, justifying the need for human insight. On the other hand, HyEnA requires less human effort and does not compromise quality compared to (fully manual) expert analysis, demonstrating the benefit of combining human and artificial intelligence.


Value Preferences Estimation and Disambiguation in Hybrid Participatory Systems

arXiv.org Artificial Intelligence

Understanding citizens' values in participatory systems is crucial for citizen-centric policy-making. We envision a hybrid participatory system where participants make choices and provide motivations for those choices, and AI agents estimate their value preferences by interacting with them. We focus on situations where a conflict is detected between participants' choices and motivations, and propose methods for estimating value preferences while addressing detected inconsistencies by interacting with the participants. We operationalize the philosophical stance that "valuing is deliberatively consequential." That is, if a participant's choice is based on a deliberation of value preferences, the value preferences can be observed in the motivation the participant provides for the choice. Thus, we propose and compare value estimation methods that prioritize the values estimated from motivations over the values estimated from choices alone. Then, we introduce a disambiguation strategy that addresses the detected inconsistencies between choices and motivations by directly interacting with the participants. We evaluate the proposed methods on a dataset of a large-scale survey on energy transition. The results show that explicitly addressing inconsistencies between choices and motivations improves the estimation of an individual's value preferences. The disambiguation strategy does not show substantial improvements when compared to similar baselines--however, we discuss how the novelty of the approach can open new research avenues and propose improvements to address the current limitations.


An Empirical Analysis of Diversity in Argument Summarization

arXiv.org Artificial Intelligence

Presenting high-level arguments is a crucial task for fostering participation in online societal discussions. Current argument summarization approaches miss an important facet of this task -- capturing diversity -- which is important for accommodating multiple perspectives. We introduce three aspects of diversity: those of opinions, annotators, and sources. We evaluate approaches to a popular argument summarization task called Key Point Analysis, which shows how these approaches struggle to (1) represent arguments shared by few people, (2) deal with data from various sources, and (3) align with subjectivity in human-provided annotations. We find that both general-purpose LLMs and dedicated KPA models exhibit this behavior, but have complementary strengths. Further, we observe that diversification of training data may ameliorate generalization. Addressing diversity in argument summarization requires a mix of strategies to deal with subjectivity.


A Systematic Review on Fostering Appropriate Trust in Human-AI Interaction

arXiv.org Artificial Intelligence

Appropriate Trust in Artificial Intelligence (AI) systems has rapidly become an important area of focus for both researchers and practitioners. Various approaches have been used to achieve it, such as confidence scores, explanations, trustworthiness cues, or uncertainty communication. However, a comprehensive understanding of the field is lacking due to the diversity of perspectives arising from various backgrounds that influence it and the lack of a single definition for appropriate trust. To investigate this topic, this paper presents a systematic review to identify current practices in building appropriate trust, different ways to measure it, types of tasks used, and potential challenges associated with it. We also propose a Belief, Intentions, and Actions (BIA) mapping to study commonalities and differences in the concepts related to appropriate trust by (a) describing the existing disagreements on defining appropriate trust, and (b) providing an overview of the concepts and definitions related to appropriate trust in AI from the existing literature. Finally, the challenges identified in studying appropriate trust are discussed, and observations are summarized as current trends, potential gaps, and research opportunities for future work. Overall, the paper provides insights into the complex concept of appropriate trust in human-AI interaction and presents research opportunities to advance our understanding on this topic.


Do Differences in Values Influence Disagreements in Online Discussions?

arXiv.org Artificial Intelligence

Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.


AI Alignment Dialogues: An Interactive Approach to AI Alignment in Support Agents

arXiv.org Artificial Intelligence

AI alignment is about ensuring AI systems only pursue goals and activities that are beneficial to humans. Most of the current approach to AI alignment is to learn what humans value from their behavioural data. This paper proposes a different way of looking at the notion of alignment, namely by introducing AI Alignment Dialogues: dialogues with which users and agents try to achieve and maintain alignment via interaction. We argue that alignment dialogues have a number of advantages in comparison to data-driven approaches, especially for behaviour support agents, which aim to support users in achieving their desired future behaviours rather than their current behaviours. The advantages of alignment dialogues include allowing the users to directly convey higher-level concepts to the agent, and making the agent more transparent and trustworthy. In this paper we outline the concept and high-level structure of alignment dialogues. Moreover, we conducted a qualitative focus group user study from which we developed a model that describes how alignment dialogues affect users, and created design suggestions for AI alignment dialogues. Through this we establish foundations for AI alignment dialogues and shed light on what requires further development and research.


Reflective Hybrid Intelligence for Meaningful Human Control in Decision-Support Systems

arXiv.org Artificial Intelligence

With the growing capabilities and pervasiveness of AI systems, societies must collectively choose between reduced human autonomy, endangered democracies and limited human rights, and AI that is aligned to human and social values, nurturing collaboration, resilience, knowledge and ethical behaviour. In this chapter, we introduce the notion of self-reflective AI systems for meaningful human control over AI systems. Focusing on decision support systems, we propose a framework that integrates knowledge from psychology and philosophy with formal reasoning methods and machine learning approaches to create AI systems responsive to human values and social norms. We also propose a possible research approach to design and develop self-reflective capability in AI systems. Finally, we argue that self-reflective AI systems can lead to self-reflective hybrid systems (human + AI), thus increasing meaningful human control and empowering human moral reasoning by providing comprehensible information and insights on possible human moral blind spots.


Automated Configuration and Usage of Strategy Portfolios for Bargaining

arXiv.org Artificial Intelligence

Bargaining can be used to resolve mixed-motive games in multi-agent systems. Although there is an abundance of negotiation strategies implemented in automated negotiating agents, most agents are based on single fixed strategies, while it is widely acknowledged that there is no single best-performing strategy for all negotiation settings. In this paper, we focus on bargaining settings where opponents are repeatedly encountered, but the bargaining problems change. We introduce a novel method that automatically creates and deploys a portfolio of complementary negotiation strategies using a training set and optimise pay-off in never-before-seen bargaining settings through per-setting strategy selection. Our method relies on the following contributions. We introduce a feature representation that captures characteristics for both the opponent and the bargaining problem. We model the behaviour of an opponent during a negotiation based on its actions, which is indicative of its negotiation strategy, in order to be more effective in future encounters. Our combination of feature-based methods generalises to new negotiation settings, as in practice, over time, it selects effective counter strategies in future encounters. Our approach is tested in an ANAC-like tournament, and we show that we are capable of winning such a tournament with a 5.6% increase in pay-off compared to the runner-up agent.