Jon Schneider
Contextual Pricing for Lipschitz Buyers
Jieming Mao, Renato Leme, Jon Schneider
Strategizing against No-regret Learners
Yuan Deng, Jon Schneider, Balasubramanian Sivan
How should a player who repeatedly plays a game against a no-regret learner strategize to maximize his utility? We study this question and show that under some mild assumptions, the player can always guarantee himself a utility of at least what he would get in a Stackelberg equilibrium of the game. When the no-regret learner has only two actions, we show that the player cannot get any higher utility than the Stackelberg equilibrium utility. But when the no-regret learner has more than two actions and plays a mean-based no-regret strategy, we show that the player can get strictly higher than the Stackelberg equilibrium utility. We provide a characterization of the optimal game-play for the player against a mean-based no-regret learner as a solution to a control problem. When the no-regret learner's strategy also guarantees him a no-swap regret, we show that the player cannot get anything higher than a Stackelberg equilibrium utility.
Contextual Pricing for Lipschitz Buyers
Jieming Mao, Renato Leme, Jon Schneider
Strategizing against No-regret Learners
Yuan Deng, Jon Schneider, Balasubramanian Sivan
How should a player who repeatedly plays a game against a no-regret learner strategize to maximize his utility? We study this question and show that under some mild assumptions, the player can always guarantee himself a utility of at least what he would get in a Stackelberg equilibrium of the game. When the no-regret learner has only two actions, we show that the player cannot get any higher utility than the Stackelberg equilibrium utility. But when the no-regret learner has more than two actions and plays a mean-based no-regret strategy, we show that the player can get strictly higher than the Stackelberg equilibrium utility. We provide a characterization of the optimal game-play for the player against a mean-based no-regret learner as a solution to a control problem. When the no-regret learner's strategy also guarantees him a no-swap regret, we show that the player cannot get anything higher than a Stackelberg equilibrium utility.
Contextual Bandits with Cross-Learning
Santiago Balseiro, Negin Golrezaei, Mohammad Mahdian, Vahab Mirrokni, Jon Schneider
This variant arises in several strategic settings, such as learning how to bid in non-truthful repeated auctions, which has gained a lot of attention lately as many platforms have switched to running first-price auctions. We call this problem the contextual bandits problem with cross-learning. The best algorithms for the classical contextual bandits problem achieve Õ( CKT) regret against all stationary policies, where C is the number of contexts, K the number of actions, and T the number of rounds. We demonstrate algorithms for the contextual bandits problem with cross-learning that remove the dependence on C and achieve regret Õ( KT). We simulate our algorithms on real auction data from an ad exchange running first-price auctions (showing that they outperform traditional contextual bandit algorithms).