Goto

Collaborating Authors

 Johnson, Mark


Modelling Child Learning and Parsing of Long-range Syntactic Dependencies

arXiv.org Artificial Intelligence

This work develops a probabilistic child language acquisition model to learn a range of linguistic phenonmena, most notably long-range syntactic dependencies of the sort found in object wh-questions, among other constructions. The model is trained on a corpus of real child-directed speech, where each utterance is paired with a logical form as a meaning representation. It then learns both word meanings and language-specific syntax simultaneously. After training, the model can deduce the correct parse tree and word meanings for a given utterance-meaning pair, and can infer the meaning if given only the utterance. The successful modelling of long-range dependencies is theoretically important because it exploits aspects of the model that are, in general, trans-context-free.


Mastering the Craft of Data Synthesis for CodeLLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown impressive performance in \emph{code} understanding and generation, making coding tasks a key focus for researchers due to their practical applications and value as a testbed for LLM evaluation. Data synthesis and filtering techniques have been widely adopted and shown to be highly effective in this context. In this paper, we present a focused survey and taxonomy of these techniques, emphasizing recent advancements. We highlight key challenges, explore future research directions, and offer practical guidance for new researchers entering the field.


Sources of Hallucination by Large Language Models on Inference Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as ``indices'' to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.


Smoothing Entailment Graphs with Language Models

arXiv.org Artificial Intelligence

The diversity and Zipfian frequency distribution of natural language predicates in corpora leads to sparsity in Entailment Graphs (EGs) built by Open Relation Extraction (ORE). EGs are computationally efficient and explainable models of natural language inference, but as symbolic models, they fail if a novel premise or hypothesis vertex is missing at test-time. We present theory and methodology for overcoming such sparsity in symbolic models. First, we introduce a theory of optimal smoothing of EGs by constructing transitive chains. We then demonstrate an efficient, open-domain, and unsupervised smoothing method using an off-the-shelf Language Model to find approximations of missing premise predicates. This improves recall by 25.1 and 16.3 percentage points on two difficult directional entailment datasets, while raising average precision and maintaining model explainability. Further, in a QA task we show that EG smoothing is most useful for answering questions with lesser supporting text, where missing premise predicates are more costly. Finally, controlled experiments with WordNet confirm our theory and show that hypothesis smoothing is difficult, but possible in principle.


Detecting and Exorcising Statistical Demons from Language Models with Anti-Models of Negative Data

arXiv.org Artificial Intelligence

It's been said that "Language Models are Unsupervised Multitask Learners." Indeed, self-supervised language models trained on "positive" examples of English text generalize in desirable ways to many natural language tasks. But if such models can stray so far from an initial self-supervision objective, a wayward model might generalize in undesirable ways too, say to nonsensical "negative" examples of unnatural language. A key question in this work is: do language models trained on (positive) training data also generalize to (negative) test data? We use this question as a contrivance to assess the extent to which language models learn undesirable properties of text, such as n-grams, that might interfere with the learning of more desirable properties of text, such as syntax. We find that within a model family, as the number of parameters, training epochs, and data set size increase, so does a model's ability to generalize to negative n-gram data, indicating standard self-supervision generalizes too far. We propose a form of inductive bias that attenuates such undesirable signals with negative data distributions automatically learned from positive data. We apply the method to remove n-gram signals from LSTMs and find that doing so causes them to favor syntactic signals, as demonstrated by large error reductions (up to 46% on the hardest cases) on a syntactic subject-verb agreement task.


Synergies in learning words and their referents

Neural Information Processing Systems

This paper presents Bayesian non-parametric models that simultaneously learn to segment words from phoneme strings and learn the referents of some of those words, and shows that there is a synergistic interaction in the acquisition of these two kinds of linguistic information. The models themselves are novel kinds of Adaptor Grammars that are an extension of an embedding of topic models into PCFGs. These models simultaneously segment phoneme sequences into words and learn the relationship between non-linguistic objects to the words that refer to them. We show (i) that modelling inter-word dependencies not only improves the accuracy of the word segmentation but also of word-object relationships, and (ii) that a model that simultaneously learns word-object relationships and word segmentation segments more accurately than one that just learns word segmentation on its own. We argue that these results support an interactive view of language acquisition that can take advantage of synergies such as these.


Partially-Supervised Image Captioning

Neural Information Processing Systems

Image captioning models are becoming increasingly successful at describing the content of images in restricted domains. However, if these models are to function in the wild --- for example, as assistants for people with impaired vision --- a much larger number and variety of visual concepts must be understood. To address this problem, we teach image captioning models new visual concepts from labeled images and object detection datasets. Since image labels and object classes can be interpreted as partial captions, we formulate this problem as learning from partially-specified sequence data. We then propose a novel algorithm for training sequence models, such as recurrent neural networks, on partially-specified sequences which we represent using finite state automata. In the context of image captioning, our method lifts the restriction that previously required image captioning models to be trained on paired image-sentence corpora only, or otherwise required specialized model architectures to take advantage of alternative data modalities. Applying our approach to an existing neural captioning model, we achieve state of the art results on the novel object captioning task using the COCO dataset. We further show that we can train a captioning model to describe new visual concepts from the Open Images dataset while maintaining competitive COCO evaluation scores.


Partially-Supervised Image Captioning

Neural Information Processing Systems

Image captioning models are becoming increasingly successful at describing the content of images in restricted domains. However, if these models are to function in the wild --- for example, as assistants for people with impaired vision --- a much larger number and variety of visual concepts must be understood. To address this problem, we teach image captioning models new visual concepts from labeled images and object detection datasets. Since image labels and object classes can be interpreted as partial captions, we formulate this problem as learning from partially-specified sequence data. We then propose a novel algorithm for training sequence models, such as recurrent neural networks, on partially-specified sequences which we represent using finite state automata. In the context of image captioning, our method lifts the restriction that previously required image captioning models to be trained on paired image-sentence corpora only, or otherwise required specialized model architectures to take advantage of alternative data modalities. Applying our approach to an existing neural captioning model, we achieve state of the art results on the novel object captioning task using the COCO dataset. We further show that we can train a captioning model to describe new visual concepts from the Open Images dataset while maintaining competitive COCO evaluation scores.


Neighborhood Mixture Model for Knowledge Base Completion

arXiv.org Artificial Intelligence

Knowledge bases are useful resources for many natural language processing tasks, however, they are far from complete. In this paper, we define a novel entity representation as a mixture of its neighborhood in the knowledge base and apply this technique on TransE-a well-known embedding model for knowledge base completion. Experimental results show that the neighborhood information significantly helps to improve the results of the TransE model, leading to better performance than obtained by other state-of-the-art embedding models on three benchmark datasets for triple classification, entity prediction and relation prediction tasks.


STransE: a novel embedding model of entities and relationships in knowledge bases

arXiv.org Artificial Intelligence

Knowledge bases of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform link prediction or knowledge base completion, i.e., predict whether a relationship not in the knowledge base is likely to be true. This paper combines insights from several previous link prediction models into a new embedding model STransE that represents each entity as a low-dimensional vector, and each relation by two matrices and a translation vector. STransE is a simple combination of the SE and TransE models, but it obtains better link prediction performance on two benchmark datasets than previous embedding models. Thus, STransE can serve as a new baseline for the more complex models in the link prediction task.