Well File:

 John Paisley


Accurate Uncertainty Estimation and Decomposition in Ensemble Learning

Neural Information Processing Systems

Ensemble learning is a standard approach to building machine learning systems that capture complex phenomena in real-world data. An important aspect of these systems is the complete and valid quantification of model uncertainty. We introduce a Bayesian nonparametric ensemble (BNE) approach that augments an existing ensemble model to account for different sources of model uncertainty.




A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI

Neural Information Processing Systems

Inferring effective connectivity between spatially segregated brain regions is important for understanding human brain dynamics in health and disease. Non-invasive neuroimaging modalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), are often used to make measurements and infer connectivity. However most studies do not consider integrating the two modalities even though each is an indirect measure of the latent neural dynamics and each has its own spatial and/or temporal limitations. In this study, we develop a linear state-space model to infer the effective connectivity in a distributed brain network based on simultaneously recorded EEG and fMRI data. Our method first identifies task-dependent and subject-dependent regions of interest (ROI) based on the analysis of fMRI data.


Variational Inference via $\chi$ Upper Bound Minimization

Neural Information Processing Systems

It posits a family of approximating distributions q and finds the closest member to the exact posterior p. Closeness is usually measured via a divergence D(q||p) from q to p. While successful, this approach also has problems. Notably, it typically leads to underestimation of the posterior variance.