Jiralerspong, Marco
General Causal Imputation via Synthetic Interventions
Jiralerspong, Marco, Jiralerspong, Thomas, Shah, Vedant, Sridhar, Dhanya, Gidel, Gauthier
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their interactions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
On the Stability of Iterative Retraining of Generative Models on their own Data
Bertrand, Quentin, Bose, Avishek Joey, Duplessis, Alexandre, Jiralerspong, Marco, Gidel, Gauthier
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models must contend with the reality that their training is curated from both clean data and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets (of real and synthetic data) on their stability. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Feature Likelihood Score: Evaluating the Generalization of Generative Models Using Samples
Jiralerspong, Marco, Bose, Avishek Joey, Gemp, Ian, Qin, Chongli, Bachrach, Yoram, Gidel, Gauthier
The past few years have seen impressive progress in the development of deep generative models capable of producing high-dimensional, complex, and photo-realistic data. However, current methods for evaluating such models remain incomplete: standard likelihood-based metrics do not always apply and rarely correlate with perceptual fidelity, while sample-based metrics, such as FID, are insensitive to overfitting, i.e., inability to generalize beyond the training set. To address these limitations, we propose a new metric called the Feature Likelihood Score (FLS), a parametric sample-based score that uses density estimation to provide a comprehensive trichotomic evaluation accounting for novelty (i.e., different from the training samples), fidelity, and diversity of generated samples. We empirically demonstrate the ability of FLS to identify specific overfitting problem cases, where previously proposed metrics fail. We also extensively evaluate FLS on various image datasets and model classes, demonstrating its ability to match intuitions of previous metrics like FID while offering a more comprehensive evaluation of generative models. Code is available at https://github.com/marcojira/fls.
AI4GCC -- Track 3: Consumption and the Challenges of Multi-Agent RL
Jiralerspong, Marco, Gidel, Gauthier
The AI4GCC competition presents a bold step forward in the direction of integrating machine learning with traditional economic policy analysis. Below, we highlight two potential areas for improvement that could enhance the competition's ability to identify and evaluate proposed negotiation protocols. Firstly, we suggest the inclusion of an additional index that accounts for consumption/utility as part of the evaluation criteria. Secondly, we recommend further investigation into the learning dynamics of agents in the simulator and the game theoretic properties of outcomes from proposed negotiation protocols. We hope that these suggestions can be of use for future iterations of the competition/simulation.