Jinwoo Shin
Mining GOLD Samples for Conditional GANs
Sangwoo Mo, Chiheon Kim, Sungwoong Kim, Minsu Cho, Jinwoo Shin
Conditional generative adversarial networks (cGANs) have gained a considerable attention in recent years due to its class-wise controllability and superior quality for complex generation tasks. We introduce a simple yet effective approach to improving cGANs by measuring the discrepancy between the data distribution and the model distribution on given samples. The proposed measure, coined the gap of log-densities (GOLD), provides an effective self-diagnosis for cGANs while being efficiently computed from the discriminator. We propose three applications of the GOLD: example re-weighting, rejection sampling, and active learning, which improve the training, inference, and data selection of cGANs, respectively. Our experimental results demonstrate that the proposed methods outperform corresponding baselines for all three applications on different image datasets.
Synthesis of MCMC and Belief Propagation
Sung-Soo Ahn, Michael Chertkov, Jinwoo Shin
Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus approach which allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we first propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular loops.
Gauging Variational Inference
Sung-Soo Ahn, Michael Chertkov, Jinwoo Shin
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used in practice, where mean-field (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments indeed confirm that the proposed algorithms outperform and generalize MF and BP.
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee, Kibok Lee, Honglak Lee, Jinwoo Shin
Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low-and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.
Learning to Specialize with Knowledge Distillation for Visual Question Answering
Jonghwan Mun, Kimin Lee, Jinwoo Shin, Bohyung Han
Visual Question Answering (VQA) is a notoriously challenging problem because it involves various heterogeneous tasks defined by questions within a unified framework. Learning specialized models for individual types of tasks is intuitively attracting but surprisingly difficult; it is not straightforward to outperform naïve independent ensemble approach. We present a principled algorithm to learn specialized models with knowledge distillation under a multiple choice learning (MCL) framework, where training examples are assigned dynamically to a subset of models for updating network parameters. The assigned and non-assigned models are learned to predict ground-truth answers and imitate their own base models before specialization, respectively. Our approach alleviates the limitation of data deficiency in existing MCL frameworks, and allows each model to learn its own specialized expertise without forgetting general knowledge. The proposed framework is model-agnostic and applicable to any tasks other than VQA, e.g., image classification with a large number of labels but few per-class examples, which is known to be difficult under existing MCL schemes. Our experimental results indeed demonstrate that our method outperforms other baselines for VQA and image classification.